Michela Matteoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4104859/publications.pdf

Version: 2024-02-01

178 papers 15,720 citations

14653 66 h-index 120 g-index

186 all docs

186 docs citations

186 times ranked 16893 citing authors

#	Article	IF	CITATIONS
1	Neurotoxins Affecting Neuroexocytosis. Physiological Reviews, 2000, 80, 717-766.	28.8	1,141
2	Astrocyte-Derived ATP Induces Vesicle Shedding and IL- $1\hat{l}^2$ Release from Microglia. Journal of Immunology, 2005, 174, 7268-7277.	0.8	514
3	Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO Journal, 2009, 28, 1043-1054.	7.8	499
4	Hardwiring the Brain: Endocannabinoids Shape Neuronal Connectivity. Science, 2007, 316, 1212-1216.	12.6	463
5	Storage and Release of ATP from Astrocytes in Culture. Journal of Biological Chemistry, 2003, 278, 1354-1362.	3.4	441
6	The Microglial Innate Immune Receptor TREM2 Is Required for Synapse Elimination and Normal Brain Connectivity. Immunity, 2018, 48, 979-991.e8.	14.3	436
7	GABA and pancreatic beta-cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion EMBO Journal, 1991, 10, 1275-1284.	7.8	350
8	Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains Journal of Cell Biology, 1992, 119, 1541-1557.	5.2	345
9	Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO Journal, 2016, 35, 239-257.	7.8	318
10	Exo-endocytotic recycling of synaptic vesicles in developing processes of cultured hippocampal neurons. Journal of Cell Biology, 1992, 117, 849-861.	5.2	307
11	Vesicular transmitter release from astrocytes. Glia, 2006, 54, 700-715.	4.9	291
12	Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Annals of Neurology, 2012, 72, 610-624.	5. 3	277
13	Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism. EMBO Journal, 2012, 31, 1231-1240.	7.8	266
14	Synaptic vesicle dynamics in living cultured hippocampal neurons visualized with CY3-conjugated antibodies directed against the lumenal domain of synaptotagmin. Journal of Neuroscience, 1995, 15, 4328-4342.	3.6	263
15	LRRK2 Controls Synaptic Vesicle Storage and Mobilization within the Recycling Pool. Journal of Neuroscience, 2011, 31, 2225-2237.	3.6	240
16	Nucleotide-mediated calcium signaling in rat cortical astrocytes: Role of P2X and P2Y receptors. Glia, 2003, 43, 218-230.	4.9	235
17	Association of Rab3A with synaptic vesicles at late stages of the secretory pathway Journal of Cell Biology, 1991, 115, 625-633.	5.2	230
18	ATP Mediates Calcium Signaling Between Astrocytes and Microglial Cells: Modulation by IFN-Î ³ . Journal of Immunology, 2001, 166, 6383-6391.	0.8	221

#	Article	IF	CITATIONS
19	Microglia convert aggregated amyloid- \hat{l}^2 into neurotoxic forms through the shedding of microvesicles. Cell Death and Differentiation, 2014, 21, 582-593.	11.2	219
20	Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO Journal, 2020, 39, e105380.	7.8	217
21	Differential effect of alpha-latrotoxin on exocytosis from small synaptic vesicles and from large dense-core vesicles containing calcitonin gene-related peptide at the frog neuromuscular junction Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 7366-7370.	7.1	202
22	SNAP-25 Modulation of Calcium Dynamics Underlies Differences in GABAergic and Glutamatergic Responsiveness to Depolarization. Neuron, 2004, 41, 599-610.	8.1	192
23	Active endocannabinoids are secreted on extracellular membrane vesicles. EMBO Reports, 2015, 16, 213-220.	4.5	182
24	Cholesterol reduction impairs exocytosis of synaptic vesicles. Journal of Cell Science, 2010, 123, 595-605.	2.0	167
25	Morphologic and biochemical analysis of the intracellular trafficking of the Alzheimer beta/A4 amyloid precursor protein. Journal of Neuroscience, 1994, 14, 3122-3138.	3.6	164
26	Uptake and recycling of pro-BDNF for transmitter-induced secretion by cortical astrocytes. Journal of Cell Biology, 2008, 183, 213-221.	5.2	155
27	Microglial microvesicle secretion and intercellular signaling. Frontiers in Physiology, 2012, 3, 149.	2.8	149
28	Synaptic vesicle proteins and early endosomes in cultured hippocampal neurons: differential effects of Brefeldin A in axon and dendrites. Journal of Cell Biology, 1993, 122, 1207-1221.	5.2	146
29	Pathophysiological roles of extracellular nucleotides in glial cells: differential expression of purinergic receptors in resting and activated microglia. Brain Research Reviews, 2005, 48, 144-156.	9.0	143
30	GABA and pancreatic beta-cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO Journal, 1991, 10, 1275-84.	7.8	143
31	Isoforms of the Na,K-ATPase are present in both axons and dendrites of hippocampal neurons in culture Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 8414-8418.	7.1	142
32	A Regulated Secretory Pathway in Cultured Hippocampal Astrocytes. Journal of Biological Chemistry, 1999, 274, 22539-22547.	3.4	142
33	A Common Exocytotic Mechanism Mediates Axonal and Dendritic Outgrowth. Journal of Neuroscience, 2001, 21, 3830-3838.	3.6	142
34	Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimer's disease. Stem Cells Translational Medicine, 2020, 9, 1068-1084.	3.3	130
35	A role for P2X7in microglial proliferation. Journal of Neurochemistry, 2006, 99, 745-758.	3.9	127
36	Synaptic vesicle endocytosis mediates the entry of tetanus neurotoxin into hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13310-13315.	7.1	126

#	Article	IF	Citations
37	SNAP-25, a Known Presynaptic Protein with Emerging Postsynaptic Functions. Frontiers in Synaptic Neuroscience, 2016, 8, 7.	2.5	122
38	Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes. Journal of Neurochemistry, 2001, 78, 646-657.	3.9	117
39	Synaptobrevin2-expressing vesicles in rat astrocytes: insights into molecular characterization, dynamics and exocytosis. Journal of Physiology, 2006, 570, 567-582.	2.9	116
40	Identification of a choroid plexus vascular barrier closing during intestinal inflammation. Science, 2021, 374, 439-448.	12.6	115
41	Chronic Blockade of Glutamate Receptors Enhances Presynaptic Release and Downregulates the Interaction between Synaptophysin-Synaptobrevin–Vesicle-Associated Membrane Protein 2. Journal of Neuroscience, 2001, 21, 6588-6596.	3.6	110
42	Synaptic and intrinsic mechanisms shape synchronous oscillations in hippocampal neurons in culture. European Journal of Neuroscience, 1999, 11, 389-397.	2.6	108
43	Hippocampal neurons recycle BDNF for activity-dependent secretion and LTP maintenance. EMBO Journal, 2006, 25, 4372-4380.	7.8	102
44	Activity-dependent phosphorylation of Ser187 is required for SNAP-25-negative modulation of neuronal voltage-gated calcium channels. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 323-328.	7.1	102
45	Subcellular Localization of Tetanus Neurotoxin-Insensitive Vesicle-Associated Membrane Protein (VAMP)/VAMP7 in Neuronal Cells: Evidence for a Novel Membrane Compartment. Journal of Neuroscience, 1999, 19, 9803-9812.	3.6	100
46	Internalization and Mechanism of Action of Clostridial Toxins in Neurons. NeuroToxicology, 2005, 26, 761-767.	3.0	98
47	SNAPâ€25 in Neuropsychiatric Disorders. Annals of the New York Academy of Sciences, 2009, 1152, 93-99.	3.8	98
48	Eps8 Regulates Axonal Filopodia in Hippocampal Neurons in Response to Brain-Derived Neurotrophic Factor (BDNF). PLoS Biology, 2009, 7, e1000138.	5.6	93
49	Leucine-Rich Repeat Kinase 2 Binds to Neuronal Vesicles through Protein Interactions Mediated by Its C-Terminal WD40 Domain. Molecular and Cellular Biology, 2014, 34, 2147-2161.	2.3	91
50	Myeloid microvesicles in cerebrospinal fluid are associated with myelin damage and neuronal loss in mild cognitive impairment and <scp>A</scp> lzheimer disease. Annals of Neurology, 2014, 76, 813-825.	5. 3	91
51	Entering neurons: botulinum toxins and synaptic vesicle recycling. EMBO Reports, 2006, 7, 995-999.	4.5	87
52	Traffic of Botulinum Toxins A and E in Excitatory and Inhibitory Neurons. Traffic, 2007, 8, 142-153.	2.7	87
53	Unique Luminal Localization of VGAT-C Terminus Allows for Selective Labeling of Active Cortical GABAergic Synapses. Journal of Neuroscience, 2008, 28, 13125-13131.	3.6	87
54	Block of Glutamate-Glutamine Cycle Between Astrocytes and Neurons Inhibits Epileptiform Activity in Hippocampus. Journal of Neurophysiology, 2002, 88, 2302-2310.	1.8	85

#	Article	IF	CITATIONS
55	Non-synaptic Localization of the Glutamate Transporter EAACI in Cultured Hippocampal Neurons. European Journal of Neuroscience, 1997, 9, 1902-1910.	2.6	84
56	The role of glial cells in synaptic function. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 403-409.	4.0	84
57	Tetanus Toxin Blocks the Exocytosis of Synaptic Vesicles Clustered at Synapses But Not of Synaptic Vesicles in Isolated Axons. Journal of Neuroscience, 1999, 19, 6723-6732.	3.6	83
58	LRRK2 kinase activity regulates synaptic vesicle trafficking and neurotransmitter release through modulation of LRRK2 macro-molecular complex. Frontiers in Molecular Neuroscience, 2014, 7, 49.	2.9	82
59	Intracerebral Injection of Extracellular Vesicles from Mesenchymal Stem Cells Exerts Reduced Aβ Plaque Burden in Early Stages of a Preclinical Model of Alzheimer's Disease. Cells, 2019, 8, 1059.	4.1	80
60	TIâ€VAMP/VAMP7 is the SNARE of secretory lysosomes contributing to ATP secretion from astrocytes. Biology of the Cell, 2012, 104, 213-228.	2.0	79
61	Different Localizations and Functions of L-Type and N-Type Calcium Channels during Development of Hippocampal Neurons. Developmental Biology, 2000, 227, 581-594.	2.0	78
62	Epileptiform Activity and Cognitive Deficits in SNAP-25+/â^' Mice are Normalized by Antiepileptic Drugs. Cerebral Cortex, 2014, 24, 364-376.	2.9	78
63	Association between SNAP-25 gene polymorphisms and cognition in autism: functional consequences and potential therapeutic strategies. Translational Psychiatry, 2015, 5, e500-e500.	4.8	76
64	Calcium-dependent Cleavage of Endogenous Wild-type Huntingtin in Primary Cortical Neurons. Journal of Biological Chemistry, 2002, 277, 39594-39598.	3.4	73
65	Classical and unconventional pathways of vesicular release in microglia. Glia, 2013, 61, 1003-1017.	4.9	72
66	Maternal Immune Activation Delays Excitatory-to-Inhibitory Gamma-Aminobutyric Acid Switch in Offspring. Biological Psychiatry, 2018, 83, 680-691.	1.3	72
67	SNAP-25 regulates spine formation through postsynaptic binding to p140Cap. Nature Communications, 2013, 4, 2136.	12.8	69
68	A Combined Approach Employing Chlorotoxin-Nanovectors and Low Dose Radiation To Reach Infiltrating Tumor Niches in Glioblastoma. ACS Nano, 2016, 10, 2509-2520.	14.6	69
69	Defects During <i>Mecp2</i> Null Embryonic Cortex Development Precede the Onset of Overt Neurological Symptoms. Cerebral Cortex, 2016, 26, 2517-2529.	2.9	67
70	Boron Nitride Nanotube-Mediated Stimulation of Cell Co-Culture on Micro-Engineered Hydrogels. PLoS ONE, 2013, 8, e71707.	2.5	66
71	Mutant PrP Suppresses Glutamatergic Neurotransmission in Cerebellar Granule Neurons by Impairing Membrane Delivery of VGCC α2Î-1 Subunit. Neuron, 2012, 74, 300-313.	8.1	64
72	Reduced SNAPâ€25 alters shortâ€ŧerm plasticity at developing glutamatergic synapses. EMBO Reports, 2013, 14, 645-651.	4.5	64

#	Article	IF	CITATIONS
73	Calcium-dependent glutamate release during neuronal development and synaptogenesis: different involvement of omega-agatoxin IVA- and omega-conotoxin GVIA-sensitive channels Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 6449-6453.	7.1	63
74	Prenatal interleukin 6 elevation increases glutamatergic synapse density and disrupts hippocampal connectivity in offspring. Immunity, 2021, 54, 2611-2631.e8.	14.3	63
75	Internalization and Proteolytic Action of Botulinum Toxins in CNS Neurons and Astrocytes. Journal of Neurochemistry, 2002, 73, 372-379.	3.9	62
76	A Novel Pathway for Presynaptic Mitogen-Activated Kinase Activation via AMPA Receptors. Journal of Neuroscience, 2005, 25, 1654-1663.	3.6	62
77	Analysis of SNAP-25 immunoreactivity in hippocampal inhibitory neurons during development in culture and in situ. Neuroscience, 2005, 131, 813-823.	2.3	62
78	Localization and Functional Relevance of System A Neutral Amino Acid Transporters in Cultured Hippocampal Neurons. Journal of Biological Chemistry, 2002, 277, 10467-10473.	3.4	60
79	Endogenous SNAP-25 Regulates Native Voltage-gated Calcium Channels in Glutamatergic Neurons. Journal of Biological Chemistry, 2010, 285, 24968-24976.	3.4	60
80	Nitric oxide synthase mediates PC12 differentiation induced by the surface topography of nanostructured TiO2. Journal of Nanobiotechnology, 2013, 11, 35.	9.1	59
81	Reduced SNAP-25 increases PSD-95 mobility and impairs spine morphogenesis. Cell Death and Differentiation, 2015, 22, 1425-1436.	11.2	59
82	The Eps8/IRSp53/VASP Network Differentially Controls Actin Capping and Bundling in Filopodia Formation. PLoS Computational Biology, 2011, 7, e1002088.	3.2	56
83	SNAP-25 single nucleotide polymorphisms are associated with hyperactivity in autism spectrum disorders. Pharmacological Research, 2011, 64, 283-288.	7.1	54
84	Eps8 controls dendritic spine density and synaptic plasticity through its actin-capping activity. EMBO Journal, 2013, 32, 1730-1744.	7.8	54
85	p140Cap Regulates Memory and Synaptic Plasticity through Src-Mediated and Citron-N-Mediated Actin Reorganization. Journal of Neuroscience, 2014, 34, 1542-1553.	3.6	54
86	Glutamate-mediated overexpression of CD38 in astrocytes cultured with neurones. Journal of Neurochemistry, 2004, 89, 264-272.	3.9	52
87	VGLUT1 and VGAT are sorted to the same population of synaptic vesicles in subsets of cortical axon terminals. Journal of Neurochemistry, 2009, 110, 1538-1546.	3.9	52
88	Biocompatible nanocomposite for PET/MRI hybrid imaging. International Journal of Nanomedicine, 2012, 7, 6021.	6.7	52
89	Early Exposure to a High-Fat Diet Impacts on Hippocampal Plasticity: Implication of Microglia-Derived Exosome-like Extracellular Vesicles. Molecular Neurobiology, 2019, 56, 5075-5094.	4.0	52
90	Sphingosine-1-Phosphate (S1P) Impacts Presynaptic Functions by Regulating Synapsin I Localization in the Presynaptic Compartment. Journal of Neuroscience, 2016, 36, 4624-4634.	3 . 6	51

#	Article	IF	CITATIONS
91	Synaptogenesis in hippocampal cultures. Cellular and Molecular Life Sciences, 1999, 55, 1448-1462.	5.4	50
92	Heterogeneous expression of SNAPâ€⊋5 in rat and human brain. Journal of Comparative Neurology, 2008, 506, 373-386.	1.6	50
93	Regulated delivery of AMPA receptor subunits to the presynaptic membrane. EMBO Journal, 2003, 22, 558-568.	7.8	48
94	Functional Single-Chain Polymer Nanoparticles: Targeting and Imaging Pancreatic Tumors <i>in Vivo</i> . Biomacromolecules, 2016, 17, 3213-3221.	5.4	48
95	Brain mapping across 16 autism mouse models reveals a spectrum of functional connectivity subtypes. Molecular Psychiatry, 2021, 26, 7610-7620.	7.9	47
96	Spatial changes in calcium signaling during the establishment of neuronal polarity and synaptogenesis Journal of Cell Biology, 1994, 126, 1527-1536.	5.2	46
97	ATP in neuron–glia bidirectional signalling. Brain Research Reviews, 2011, 66, 106-114.	9.0	45
98	The Communication Between the Immune and Nervous Systems: The Role of IL- $1\hat{l}^2$ in Synaptopathies. Frontiers in Molecular Neuroscience, 2018, 11, 111.	2.9	45
99	Neurofilament proteins are co-expressed with desmin in heart conduction system myocytes. Journal of Cell Science, 1990, 97, 11-21.	2.0	44
100	Astrocytes are required for the oscillatory activity in cultured hippocampal neurons. European Journal of Neuroscience, 1999, 11, 2793-2800.	2.6	43
101	Spatial and Temporal Regulation of Ca ²⁺ /Calmodulin-Dependent Protein Kinase II Activity in Developing Neurons. Journal of Neuroscience, 2002, 22, 7016-7026.	3.6	43
102	Cross talk between vestibular neurons and Schwann cells mediates BDNF release and neuronal regeneration. Brain Cell Biology, 2007, 35, 187-201.	3.2	42
103	Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling andÂβ1â€integrin. EMBO Journal, 2019, 38, .	7.8	42
104	Developmentally regulated expression of calcitonin gene-related peptide at mammalian neuromuscular junction. Journal of Molecular Neuroscience, 1990, 2, 175-184.	2.3	41
105	Cracking Down on Inhibition: Selective Removal of GABAergic Interneurons from Hippocampal Networks. Journal of Neuroscience, 2012, 32, 1989-2001.	3.6	40
106	Vesicle turnover in developing neurons: how to build a presynaptic terminal. Trends in Cell Biology, 2004, 14, 133-140.	7.9	39
107	Regulation of peripheral T cell activation by calreticulin. Journal of Experimental Medicine, 2006, 203, 461-471.	8.5	39
108	Testing $\hat{Al^2}$ toxicity on primary CNS cultures using drug-screening microfluidic chips. Lab on A Chip, 2014, 14, 2860-2866.	6.0	39

#	Article	lF	Citations
109	A novel SYN1 missense mutation in non-syndromic X-linked intellectual disability affects synaptic vesicle life cycle, clustering and mobility. Human Molecular Genetics, 2017, 26, 4699-4714.	2.9	37
110	Different properties of P2X7 receptor in hippocampal and cortical astrocytes. Purinergic Signalling, 2009, 5, 233-240.	2.2	35
111	The synaptic split of SNAP-25: Different roles in glutamatergic and GABAergic neurons?. Neuroscience, 2009, 158, 223-230.	2.3	33
112	Lack of IL-1R8 in neurons causes hyperactivation of IL-1 receptor pathway and induces MECP2-dependent synaptic defects. ELife, 2017, 6, .	6.0	32
113	Severe Intellectual Disability and Enhanced Gamma-Aminobutyric Acidergic Synaptogenesis in a Novel Model of Rare RASopathies. Biological Psychiatry, 2017, 81, 179-192.	1.3	30
114	Synaptic Interactome Mining Reveals p140Cap as a New Hub for PSD Proteins Involved in Psychiatric and Neurological Disorders. Frontiers in Molecular Neuroscience, 2017, 10, 212.	2.9	30
115	Environmental regulation of the chloride transporter KCC2: switching inflammation off to switch the GABA on?. Translational Psychiatry, 2020, 10, 349.	4.8	30
116	Amyloid-β 1–24 C-terminal truncated fragment promotes amyloid-β 1–42 aggregate formation in the healthy brain. Acta Neuropathologica Communications, 2016, 4, 110.	5.2	27
117	Fingolimod Limits Acute A \hat{l}^2 Neurotoxicity and Promotes Synaptic Versus Extrasynaptic NMDA Receptor Functionality in Hippocampal Neurons. Scientific Reports, 2017, 7, 41734.	3.3	27
118	Substance P-like immunoreactivity at the frog neuromuscular junction. Neuroscience, 1990, 37, 271-275.	2.3	26
119	Molecular mechanisms in neurotransmitter release. Current Opinion in Neurobiology, 1991, 1, 91-97.	4.2	26
120	Response to axotomy of an identified leech neuron, in vivo and in culture. Brain Research, 1984, 298, 347-352.	2.2	25
121	Mechanisms of synaptogenesis in hippocampal neurons in primary culture. Journal of Physiology (Paris), 1995, 89, 51-55.	2.1	25
122	Overflow Microfluidic Networks: Application to the Biochemical Analysis of Brain Cell Interactions in Complex Neuroinflammatory Scenarios. Analytical Chemistry, 2012, 84, 9833-9840.	6.5	25
123	Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts. EBioMedicine, 2016, 7, 191-204.	6.1	24
124	Calcium Dependence of Synaptic Vesicle Recycling Before and After Synaptogenesis. Journal of Neurochemistry, 1998, 71, 1987-1992.	3.9	23
125	From filopodia to synapses: the role of actinâ€capping and antiâ€capping proteins. European Journal of Neuroscience, 2011, 34, 1655-1662.	2.6	22
126	Nanostructured TiO2 surfaces promote polarized activation of microglia, but not astrocytes, toward a proinflammatory profile. Nanoscale, 2013, 5, 10963.	5.6	22

#	Article	IF	CITATIONS
127	New Role of ATM in Controlling GABAergic Tone During Development. Cerebral Cortex, 2016, 26, 3879-3888.	2.9	20
128	A radioimmunoassay to monitor synaptic activity in hippocampal neurons in vitro. European Journal of Cell Biology, 1995, 66, 246-56.	3.6	20
129	Hydrogel for Cell Housing in the Brain and in the Spinal Cord. International Journal of Artificial Organs, 2011, 34, 295-303.	1.4	19
130	Rapid prototyping of nano- and micro-patterned substrates for the control of cell neuritogenesis by topographic and chemical cues. Materials Science and Engineering C, 2011, 31, 892-899.	7.3	19
131	VGLUT1/VGAT co-expression sustains glutamate-gaba co-release and is regulated by activity. Journal of Cell Science, 2015, 128, 1669-73.	2.0	19
132	Astrocytic Factors Controlling Synaptogenesis: A Team Play. Cells, 2020, 9, 2173.	4.1	19
133	Calpain activity contributes to the control of SNAP-25 levels in neurons. Molecular and Cellular Neurosciences, 2008, 39, 314-323.	2.2	18
134	Overflow Microfluidic Networks for Open and Closed Cell Cultures on Chip. Analytical Chemistry, 2010, 82, 3936-3942.	6.5	18
135	Physico-chemical and toxicological characterization of iron-containing albumin nanoparticles as platforms for medical imaging. Journal of Controlled Release, 2014, 194, 130-137.	9.9	18
136	A Microfluidic Human Model of Blood–Brain Barrier Employing Primary Human Astrocytes. Advanced Biology, 2019, 3, e1800335.	3.0	18
137	A microfluidic device for depositing and addressing two cell populations with intercellular population communication capability. Biomedical Microdevices, 2010, 12, 275-282.	2.8	17
138	Intrinsic calcium dynamics control botulinum toxin A susceptibility in distinct neuronal populations. Cell Calcium, 2010, 47, 419-424.	2.4	17
139	Kainate Induces Mobilization of Synaptic Vesicles at the Growth Cone through the Activation of Protein Kinase A. Cerebral Cortex, 2013, 23, 531-541.	2.9	17
140	Neuropsycological gender differences in healthy individuals and in pediatric neurodevelopmental disorders. A role for SNAP-25. Medical Hypotheses, 2009, 73, 978-980.	1.5	16
141	Presynaptic AMPA receptors: more than just ion channels?. Biology of the Cell, 2004, 96, 257-260.	2.0	16
142	Secretory organelles of neurons and their relationship to organelles of other cells. Cell Biology International Reports, 1989, 13, 981-992.	0.6	15
143	Ectonucleotidase activity and immunosuppression in astrocyte-CD4 T cell bidirectional signaling. Oncotarget, 2016, 7, 5143-5156.	1.8	15
144	Controlled deposition of cells in sealed microfluidics using flow velocity boundaries. Lab on A Chip, 2009, 9, 1395.	6.0	14

#	Article	IF	CITATIONS
145	A soluble biocompatible guanidine-containing polyamidoamine as promoter of primary brain cell adhesion and <i>in vitro </i> cell culturing. Science and Technology of Advanced Materials, 2014, 15, 045007.	6.1	14
146	Inactivation kinetics of voltage-gated calcium channels in glutamatergic neurons are influenced by SNAP-25. Channels, 2011, 5, 304-307.	2.8	13
147	p140Cap Regulates GABAergic Synaptogenesis and Development of Hippocampal Inhibitory Circuits. Cerebral Cortex, 2019, 29, 91-105.	2.9	13
148	The DNA repair protein ATM as a target in autism spectrum disorder. JCI Insight, 2021, 6, .	5.0	13
149	A Simple Method to Generate Adipose Stem Cell-Derived Neurons for Screening Purposes. Journal of Molecular Neuroscience, 2013, 51, 274-281.	2.3	12
150	The Control of Neuronal Calcium Homeostasis by SNAP-25 and its Impact on Neurotransmitter Release. Neuroscience, 2019, 420, 72-78.	2.3	12
151	Active endocannabinoids are secreted on the surface of microglial microvesicles. SpringerPlus, 2015, 4, L29.	1.2	11
152	Mutant prion proteins increase calcium permeability of AMPA receptors, exacerbating excitotoxicity. PLoS Pathogens, 2020, 16, e1008654.	4.7	11
153	Pharmacology on microfluidics: multimodal analysis for studying cell–cell interaction. Current Opinion in Pharmacology, 2013, 13, 821-828.	3.5	10
154	Different attentional abilities among inbred mice strains using virtual object recognition task (VORT): SNAP25+/â^ mice as a model of attentional deficit. Behavioural Brain Research, 2016, 296, 393-400.	2.2	10
155	Strategies and Tools for Studying Microglial-Mediated Synapse Elimination and Refinement. Frontiers in Immunology, 2021, 12, 640937.	4.8	10
156	Radiation and Adjuvant Drug-Loaded Liposomes target Glioblastoma Stem Cells and Trigger <i>In-situ</i> Immune Response. Neuro-Oncology Advances, 2021, 3, vdab076.	0.7	9
157	Reduced ccl11/eotaxin mediates the beneficial effects of environmental stimulation on the aged hippocampus. Brain, Behavior, and Immunity, 2021, 98, 234-244.	4.1	9
158	Lack of the Actin Capping Protein, Eps8, Affects NMDA-Type Glutamate Receptor Function and Composition. Frontiers in Molecular Neuroscience, 2018, 11, 313.	2.9	7
159	Dissecting the Shared and Context-Dependent Pathways Mediated by the p140Cap Adaptor Protein in Cancer and in Neurons. Frontiers in Cell and Developmental Biology, 2019, 7, 222.	3.7	7
160	Differential time course of the response to axotomy induced by cut or crush in the leech AP cell. Journal of Neurobiology, 1986, 17, 373-381.	3.6	6
161	Neurological consequences of neurovascular unit and brain vasculature damages: potential risks for pregnancy infections and COVIDâ€19â€babies. FEBS Journal, 2022, 289, 3374-3392.	4.7	6
162	Engineering injured spinal cord with bone marrow-derived stem cells and hydrogel-based matrices: a glance at the state of the art. Journal of Applied Biomaterials and Biomechanics, 2008, 6, 1-8.	0.4	6

#	Article	IF	CITATIONS
163	Subventricular zone neural progenitors reverse TNF-alpha effects in cortical neurons. Stem Cell Research and Therapy, 2015, 6, 166.	5.5	5
164	Synapsin I deletion reduces neuronal damage and ameliorates clinical progression of experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity, 2018, 68, 197-210.	4.1	3
165	Effect of colchicine and vinblastine on identified leech neurons. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1985, 82, 353-356.	0.2	2
166	Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO Journal, 2009, 28, 1374-1374.	7.8	2
167	Integrating Primary Astrocytes in a Microfluidic Model of the Blood–Brain Barrier. Methods in Molecular Biology, 2022, , 225-240.	0.9	2
168	Heterogeneous expression of SNAP-25 in rat and human brain. Journal of Comparative Neurology, 2008, 506, spc1-spc1.	1.6	1
169	Feeling depressed? Keep calm, and watch microglia. Immunity, 2021, 54, 191-193.	14.3	1
170	Secretory Organelles of Neurons and their Relationship to Organelles of Other Cells., 1990,, 1-12.		1
171	Heterogeneous expression of SNAP-25 in rat and human brain. Journal of Comparative Neurology, 2008, 506, spc1-spc1.	1.6	0
172	mApoE-Functionalized Nanoliposomes Delivering Doxorubicin and Ultrasmall Superparamagnetic Iron Oxide to Glioblastoma Cells Characterized by TEM and Confocal Microscopy. Microscopy and Microanalysis, 2015, 21, 559-560.	0.4	0
173	Effect of extracellular vesicles derived from distinct brain cells on $\hat{Al^2}$ toxicity and assembly: focus on Microglia derived vesicles. SpringerPlus, 2015, 4, .	1.2	0
174	Editorial on the Special Issue on SNARE Proteins: A Long Journey of Science in Brain Health and Disease. Neuroscience, 2019, 420, 1-3.	2.3	0
175	Mind your heart: the epigenetic consequences of heart failure on brain function. EMBO Molecular Medicine, 2021, 13, e13785.	6.9	0
176	Regulation of peripheral T cell activation by calreticulin. Journal of Cell Biology, 2006, 172, i11-i11.	5.2	0
177	Exo-Endocytotic Recycling of Synaptic Vesicles in Developing Neurons., 1993,, 153-163.		0
178	Maturation of Pre- and Post-Synaptic Compartments in Hippocampal Neurons Developing in Culture. , 1997, , 133-143.		0