
## Prabal Banerjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4104848/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Construction of Enantiopure Pyrrolidine Ring System via Asymmetric [3+2]-Cycloaddition of Azomethine Ylides. Chemical Reviews, 2006, 106, 4484-4517.                                                                                                                           | 47.7 | 886       |
| 2  | Lewis Acid Catalyzed Diastereoselective Cycloaddition Reactions of Donor–Acceptor Cyclopropanes<br>and Vinyl Azides: Synthesis of Functionalized Azidocyclopentane and Tetrahydropyridine Derivatives.<br>Organic Letters, 2017, 19, 304-307.                                  | 4.6  | 102       |
| 3  | Donor–Acceptor Cyclopropanes as an Expedient Building Block Towards the Construction of<br>Nitrogenâ€Containing Molecules: An Update. Advanced Synthesis and Catalysis, 2020, 362, 1447-1484.                                                                                  | 4.3  | 98        |
| 4  | Ring Expansion of Donor–Acceptor Cyclopropane via Substituent Controlled Selective<br><i>N</i> -Transfer of Oxaziridine: Synthetic and Mechanistic Insights. Organic Letters, 2016, 18,<br>4940-4943.                                                                          | 4.6  | 73        |
| 5  | Lewis Acid Catalyzed Annulation of Donor–Acceptor Cyclopropane and<br><i>N</i> -Tosylaziridinedicarboxylate: One-Step Synthesis of Functionalized<br>2 <i>H</i> -Furo[2,3- <i>c</i> ]pyrroles. Journal of Organic Chemistry, 2015, 80, 7235-7242.                              | 3.2  | 64        |
| 6  | Reactivity of Donorâ€Acceptor Cyclopropanes with Saturated and Unsaturated Heterocyclic<br>Compounds. Israel Journal of Chemistry, 2016, 56, 512-521.                                                                                                                          | 2.3  | 52        |
| 7  | Lewisâ€Acidâ€Catalysed Tandem Meinwald Rearrangement/Intermolecular [3+2]â€Cycloaddition of Epoxides<br>with Donor–Acceptor Cyclopropanes: Synthesis of Functionalized Tetrahydrofurans. European<br>Journal of Organic Chemistry, 2015, 2015, 2517-2523.                      | 2.4  | 47        |
| 8  | Lewis Acidâ€Catalyzed [3+2] Cycloaddition of Donorâ€Acceptor Cyclopropanes and Enamines:<br>Enantioselective Synthesis of Nitrogenâ€Functionalized Cyclopentane Derivatives. Advanced Synthesis<br>and Catalysis, 2016, 358, 2053-2058.                                        | 4.3  | 46        |
| 9  | Lewis Acid Catalyzed Annulation of Cyclopropane Carbaldehydes and Aryl Hydrazines: Construction of Tetrahydropyridazines and Application Toward a One-Pot Synthesis of Hexahydropyrrolo[1,2- <i>b</i> )pyridazines. Journal of Organic Chemistry, 2018, 83, 5438-5449.         | 3.2  | 44        |
| 10 | Lewis Acid Catalyzed Formal [3+2] Cycloaddition of Donorâ€Acceptor Cyclopropanes and 1â€Azadienes:<br>Synthesis of Imine Functionalized Cyclopentanes and Pyrrolidine Derivatives. Advanced Synthesis and<br>Catalysis, 2017, 359, 3848-3854.                                  | 4.3  | 38        |
| 11 | Synthesis of Indenopyridine Derivatives <i>via</i> MgI <sub>2</sub> â€Promoted [2+4] Cycloaddition<br>Reaction of <i>Inâ€situ</i> Generated 2â€Styrylmalonate from Donorâ€Acceptor Cyclopropanes and<br>Chalconimines. Advanced Synthesis and Catalysis, 2018, 360, 3687-3692. | 4.3  | 33        |
| 12 | Lewis Acid-Catalyzed [3+3] Annulation of Donor–Acceptor Cyclopropanes and Indonyl Alcohols: One<br>Step Synthesis of Substituted Carbazoles with Promising Photophysical Properties. Journal of<br>Organic Chemistry, 2019, 84, 1614-1623.                                     | 3.2  | 32        |
| 13 | Construction of Isoxazolidines through Formal [3+2] Cycloaddition Reactions of in situ Generated<br>Nitrosocarbonyls with Donor–Acceptor Cyclopropanes: Synthesis of αâ€Amino γâ€Butyrolactones.<br>European Journal of Organic Chemistry, 2016, 2016, 4059-4066.              | 2.4  | 26        |
| 14 | Exploitation of Cyclopropane Carbaldehydes to Prins Cyclization: Quick Access to<br>( <i>E</i> )-Hexahydrooxonine and Octahydrocyclopenta[ <i>b</i> ]pyran. Organic Letters, 2018, 20,<br>5163-5166.                                                                           | 4.6  | 25        |
| 15 | Oneâ€Pot Synthesis of Oxazolidine Derivatives by [3+2]â€Annulation Reactions of<br>1â€Tosylâ€2â€phenyl/alkylaziridines with Aryl Epoxides. Asian Journal of Organic Chemistry, 2016, 5, 360-366.                                                                               | 2.7  | 24        |
| 16 | [3+3] Annulation via Ring Opening/Cyclization of Donor–Acceptor Cyclopropanes with<br>(Un)symmetrical Ureas: A Quick Access to Highly Functionalized Tetrahydropyrimidinones. European<br>Journal of Organic Chemistry, 2019, 2019, 7804-7813.                                 | 2.4  | 24        |
| 17 | Regioselective BrĄ̃nsted Acid-Catalyzed Annulation of Cyclopropane Aldehydes with <i>N</i> ′-Aryl<br>Anthranil Hydrazides: Domino Construction of<br>Tetrahydropyrrolo[1,2- <i>a</i> ]quinazolin-5(1 <i>H</i> )ones. Journal of Organic Chemistry, 2020, 85,<br>3393-3406.     | 3.2  | 23        |
| 18 | Metalâ€Free Ring Opening Cyclization of Cyclopropane Carbaldehydes and <i>N</i> â€Benzyl Anilines: An<br>Ecoâ€Friendly Access to Functionalized Benzo[ <i>b</i> ]azepine Derivatives. Advanced Synthesis and<br>Catalysis, 2019, 361, 2849-2854.                               | 4.3  | 22        |

| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Accessing Dihydro-1,2-oxazine via Cloke–Wilson-Type Annulation of Cyclopropyl Carbonyls:<br>Application toward the Diastereoselective Synthesis of Pyrrolo[1,2- <i>b</i> ][1,2]oxazine. Journal of<br>Organic Chemistry, 2020, 85, 6535-6550.                                 | 3.2 | 21        |
| 20 | Substituent and Lewis Acid Promoted Dual Behavior of Epoxides towards [3+2]â€Annulation Reactions<br>with Donorâ€Acceptor Cyclopropanes: Synthesis of Substituted Cyclopentane and Tetrahydrofuran.<br>European Journal of Organic Chemistry, 2017, 2017, 1647-1656.          | 2.4 | 20        |
| 21 | Electricity Driven 1,3â€Oxohydroxylation of Donorâ€Acceptor Cyclopropanes: a Mild and<br>Straightforward Access to βâ€Hydroxy Ketones. European Journal of Organic Chemistry, 2021, 2021,<br>5053-5057.                                                                       | 2.4 | 20        |
| 22 | Direct Synthesis of Paracetamol via Site-Selective Electrochemical Ritter-type C–H Amination of Phenol. Organic Letters, 2022, 24, 2310-2314.                                                                                                                                 | 4.6 | 20        |
| 23 | Construction of thiazines and oxathianes via [3 + 3] annulation of N-tosylaziridinedicarboxylates and oxiranes with 1,4-dithiane-2,5-diol: application towards the synthesis of bioactive molecules. Organic and Biomolecular Chemistry, 2017, 15, 5182-5190.                 | 2.8 | 19        |
| 24 | Exploitation of donor–acceptor cyclopropanes and <i>N</i> -sulfonyl 1-azadienes towards the<br>synthesis of spiro-cyclopentane benzofuran derivatives. Organic and Biomolecular Chemistry, 2019, 17,<br>8149-8152.                                                            | 2.8 | 19        |
| 25 | Electrochemical rearrangement protocols towards the construction of diverse molecular frameworks. Chemical Communications, 2021, 57, 2464-2478.                                                                                                                               | 4.1 | 18        |
| 26 | Arylcyclopropane yet in its infancy: the challenges and recent advances in its functionalization.<br>Organic and Biomolecular Chemistry, 2021, 19, 8627-8645.                                                                                                                 | 2.8 | 17        |
| 27 | Synthesis of functionalized dispiro-oxindoles through azomethine ylide dimerization and mechanistic studies to explain the diastereoselectivity. RSC Advances, 2014, 4, 33236-33244.                                                                                          | 3.6 | 16        |
| 28 | Electrochemical access to benzimidazolone and quinazolinone derivatives <i>via in situ</i> generation of isocyanates. Chemical Communications, 2021, 57, 631-634.                                                                                                             | 4.1 | 15        |
| 29 | Relieving the stress together: annulation of two different strained rings towards the formation of biologically significant heterocyclic scaffolds. Chemical Communications, 2021, 57, 5359-5373.                                                                             | 4.1 | 15        |
| 30 | Spiro―and Bicycloannulation of Sulfoximineâ€Substituted 2â€Hydroxyâ€dihydropyrans: Enantioselective<br>Synthesis of Spiroketals, Spiroethers, and Oxabicycles and Structure of Dihydropyran Oxocarbenium<br>Ions. European Journal of Organic Chemistry, 2014, 2014, 529-553. | 2.4 | 13        |
| 31 | Metal-free domino Cloke-Wilson rearrangement-hydration-dimerization of cyclopropane<br>carbaldehydes: A facile access to oxybis(2-aryltetrahydrofuran) derivatives. Tetrahedron, 2020, 76,<br>131080.                                                                         | 1.9 | 12        |
| 32 | Electricity mediated [3+2]-cycloaddition of <i>N</i> -sulfonylcyclopropanes with olefins <i>via<br/>N</i> -centered radical intermediates: access to cyclopentane analogs. Chemical Communications,<br>2022, 58, 5459-5462.                                                   | 4.1 | 11        |
| 33 | Electrochemical Generation of a Nonstabilized Azomethine Ylide: Access to Substituted <i>N</i> -Heterocycles. Journal of Organic Chemistry, 2021, 86, 16104-16113.                                                                                                            | 3.2 | 10        |
| 34 | Cascade intramolecular rearrangement/cycloaddition of nitrocyclopropane carboxylates with<br>alkynes/alkenes: access to uncommon bi(hetero)cyclic systems. Organic Chemistry Frontiers, 2021, 8,<br>1267-1274.                                                                | 4.5 | 9         |
| 35 | An Assessment of Electrophilic Nâ€Transfer of Oxaziridine with Different 2â€; 3â€; and 4â€Carbon<br>Donor–Acceptor Substrates to Furnish Diverse N ontaining Heterocycles in a Single Step. European<br>Journal of Organic Chemistry, 2019, 2019, 3806-3814.                  | 2.4 | 8         |
| 36 | Accessing Complex Tetrahydrofurobenzo-Pyran/Furan Scaffolds <i>via</i> Lewis-Acid Catalyzed<br>Bicyclization of Cyclopropane Carbaldehydes with Quinone Methides/Esters. Journal of Organic<br>Chemistry, 2022, 87, 7905-7918.                                                | 3.2 | 8         |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Palladium-catalyzed regio- and stereoselective access to allyl ureas/carbamates: facile synthesis of imidazolidinones and oxazepinones. Organic and Biomolecular Chemistry, 2020, 18, 6564-6570.                                                 | 2.8 | 6         |
| 38 | Vinylogous Azaâ€Michael Addition of Urea Derivatives with <i>p</i> â€Quinone Methides Followed by<br>Oxidative Dearomative Cyclization: Approach to Spiroimidazolidinone Derivatives. Advanced Synthesis<br>and Catalysis, 2021, 363, 2813-2824. | 4.3 | 6         |
| 39 | Aza-Oxyallyl Cation Driven 3-Amido Oxetane Rearrangement to 2-Oxazolines: Access to Oxazoline<br>Amide Ethers. Journal of Organic Chemistry, 2022, , .                                                                                           | 3.2 | 5         |
| 40 | α <i>,</i> β-Unsaturated Carbonyls for One-Pot Transition-Metal-Free Access to<br>3,6-Dihydro-2 <i>H</i> -pyrans. Journal of Organic Chemistry, 2022, , .                                                                                        | 3.2 | 1         |