Abelardo Ramirez-Hernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4104738/publications.pdf

Version: 2024-02-01

43 papers

1,536 citations

279701 23 h-index 302012 39 g-index

43 all docs 43 docs citations

43 times ranked

1538 citing authors

#	Article	IF	Citations
1	Is the "Bricks-and-Mortar―Mesophase Bicontinuous? Dynamic Simulations of Miktoarm Block Copolymer/Homopolymer Blends. Macromolecules, 2022, 55, 745-758.	2.2	3
2	A Bidimensional Gay-Berne Calamitic Fluid: Structure and Phase Behavior in Bulk and Strongly Confined Systems. Frontiers in Physics, 2021, 8, .	1.0	8
3	Mesoscale Simulations of Polymer Solution Self-Assembly: Selection of Model Parameters within an Implicit Solvent Approximation. Polymers, 2021, 13, 953.	2.0	5
4	Grain polydispersity and coherent crystal reorientations are features to foster stress hotspots in polycrystalline alloys under load. Science Advances, 2021, 7, .	4.7	3
5	Self-Aassembly of core-corona colloids under cylindrical confinement: A Monte Carlo study. Journal of Molecular Liquids, 2021, 335, 116219.	2.3	7
6	A simple method to design interaction potentials able to generate a desired geometrical pattern. Journal of Molecular Liquids, 2021, 339, 116387.	2.3	1
7	Phase diagrams of simple models of colloidal nanocrystals in two dimensions. JPhys Materials, 2021, 4, 015006.	1.8	5
8	Dynamics and phase behavior of two-dimensional size-asymmetric binary mixtures of core-softened colloids. Journal of Chemical Physics, 2021, 155, 214901.	1.2	8
9	Kinetically-arrested single-polymer nanostructures from amphiphilic mikto-grafted bottlebrushes in solution: a simulation study. Soft Matter, 2020, 16, 4969-4979.	1.2	24
10	Phase behavior of a two-dimensional core-softened system: new physical insights. Journal of Physics Condensed Matter, 2020, 32, 275103.	0.7	8
11	Hierarchical complex self-assembly in binary nanoparticle mixtures. Journal of Physics Condensed Matter, 2019, 31, 475102.	0.7	3
12	Enzyme-Induced Kinetic Control of Peptide–Polymer Micelle Morphology. ACS Macro Letters, 2019, 8, 676-681.	2.3	22
13	A Detailed Examination of the Topological Constraints of Lamellae-Forming Block Copolymers. Macromolecules, 2018, 51, 2110-2124.	2.2	19
14	Defect Annihilation Pathways in Directed Assembly of Lamellar Block Copolymer Thin Films. ACS Nano, 2018, 12, 9974-9981.	7.3	38
15	A multi-chain polymer slip-spring model with fluctuating number of entanglements: Density fluctuations, confinement, and phase separation. Journal of Chemical Physics, 2017, 146, 014903.	1.2	34
16	Segregation of liquid crystal mixtures in topological defects. Nature Communications, 2017, 8, 15064.	5.8	25
17	Mesoscale martensitic transformation in single crystals of topological defects. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10011-10016.	3.3	42
18	Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy. Journal of the American Chemical Society, 2017, 139, 17140-17151.	6.6	118

#	Article	IF	CITATIONS
19	Understanding Atomic-Scale Behavior of Liquid Crystals at Aqueous Interfaces. Journal of Chemical Theory and Computation, 2017, 13, 237-244.	2.3	31
20	Demixing by a Nematic Mean Field: Coarse-Grained Simulations of Liquid Crystalline Polymers. Polymers, 2017, 9, 88.	2.0	18
21	A multichain polymer slip-spring model with fluctuating number of entanglements for linear and nonlinear rheology. Journal of Chemical Physics, 2015, 143, 243147.	1.2	42
22	Simulation of Defect Reduction in Block Copolymer Thin Films by Solvent Annealing. ACS Macro Letters, 2015, 4, 11-15.	2.3	79
23	Interplay of Surface Energy and Bulk Thermodynamic Forces in Ordered Block Copolymer Droplets. Macromolecules, 2015, 48, 4717-4723.	2.2	11
24	Characterizing the Three-Dimensional Structure of Block Copolymers <i>via</i> Sequential Infiltration Synthesis and Scanning Transmission Electron Tomography. ACS Nano, 2015, 9, 5333-5347.	7.3	98
25	Grazing-incidence small angle x-ray scattering studies of nanoscale polymer gratings. Proceedings of SPIE, 2015, , .	0.8	5
26	Molecular pathways for defect annihilation in directed self-assembly. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14144-14149.	3.3	98
27	Control of Directed Self-Assembly in Block Polymers by Polymeric Topcoats. Macromolecules, 2014, 47, 3520-3527.	2.2	36
28	Block Copolymer Assembly on Nanoscale Patterns of Polymer Brushes Formed by Electrohydrodynamic Jet Printing. ACS Nano, 2014, 8, 6606-6613.	7.3	52
29	Investigation of cross-linking poly(methyl methacrylate) as a guiding material in block copolymer directed self-assembly. , 2014, , .		3
30	Dynamical Simulations of Coarse Grain Polymeric Systems: Rouse and Entangled Dynamics. Macromolecules, 2013, 46, 6287-6299.	2.2	59
31	Chemical Patterns for Directed Self-Assembly of Lamellae-Forming Block Copolymers with Density Multiplication of Features. Macromolecules, 2013, 46, 1415-1424.	2.2	201
32	Theoretically informed entangled polymer simulations: linear and non-linear rheology of melts. Soft Matter, 2013, 9, 2030.	1.2	43
33	Topcoat Approaches for Directed Self-Assembly of Strongly Segregating Block Copolymer Thin Films. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 55-58.	0.1	52
34	Liquid crystal nanodroplets, and the balance between bulk and interfacial interactions. Soft Matter, 2012, 8, 1443-1450.	1.2	32
35	Morphology of Lamellae-Forming Block Copolymer Films between Two Orthogonal Chemically Nanopatterned Striped Surfaces. Physical Review Letters, 2012, 108, 065502.	2.9	34
36	Symmetric Diblock Copolymers Confined by Two Nanopatterned Surfaces. Macromolecules, 2012, 45, 2588-2596.	2.2	25

#	Article	IF	CITATIONS
37	Nonequilibrium Simulations of Lamellae Forming Block Copolymers under Steady Shear: A Comparison of Dissipative Particle Dynamics and Brownian Dynamics. Macromolecules, 2012, 45, 8109-8116.	2.2	32
38	Nonbulk Complex Structures in Thin Films of Symmetric Block Copolymers on Chemically Nanopatterned Surfaces. Macromolecules, 2012, 45, 3986-3992.	2.2	40
39	Polymer–solid contacts described by soft, coarse-grained models. Physical Chemistry Chemical Physics, 2011, 13, 10491.	1.3	38
40	Numerical simulation of Gaussian chains near hard surfaces. Journal of Chemical Physics, 2010, 133, 064905.	1.2	13
41	RamÃrez-Hernández, Larralde, and Leyvraz Reply:. Physical Review Letters, 2009, 102, .	2.9	3
42	Systems with negative specific heat in thermal contact: Violation of the zeroth law. Physical Review E, 2008, 78, 061133.	0.8	52
43	Violation of the Zeroth Law of Thermodynamics in Systems with Negative Specific Heat. Physical Review Letters, 2008, 100, 120601.	2.9	66