Ning Zhao

List of Publications by Citations

Source: https://exaly.com/author-pdf/4104677/ning-zhao-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

10,621 86 58 324 h-index g-index citations papers 6.1 6.42 12,334 335 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
324	Combination of bioinspiration: a general route to superhydrophobic particles. <i>Journal of the American Chemical Society</i> , 2012 , 134, 9879-81	16.4	358
323	Dynamic Self-Assembly Induced Rapid Dissolution of Cellulose at Low Temperatures. <i>Macromolecules</i> , 2008 , 41, 9345-9351	5.5	322
322	Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure. <i>ACS Applied Materials & Interfaces</i> , 2015 , 7, 5701-8	9.5	294
321	Multi-membrane hydrogel fabricated by facile dynamic self-assembly. Soft Matter, 2009, 5, 1987	3.6	193
320	Oxime-Based and Catalyst-Free Dynamic Covalent Polyurethanes. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8678-8684	16.4	192
319	Fabrication of Biomimetic Superhydrophobic Coating with a Micro-Nano-Binary Structure. <i>Macromolecular Rapid Communications</i> , 2005 , 26, 1075-1080	4.8	183
318	Mussel-inspired chemistry for robust and surface-modifiable multilayer films. <i>Langmuir</i> , 2011 , 27, 13684	l _z p1	159
317	Superhydrophobic Surface from Vapor-Induced Phase Separation of Copolymer Micellar Solution. <i>Macromolecules</i> , 2005 , 38, 8996-8999	5.5	157
316	1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe2@C core-shell nanorods for advanced sodium ion batteries. <i>Energy Storage Materials</i> , 2018 , 10, 48-55	19.4	150
315	Bioinspired materials: from low to high dimensional structure. <i>Advanced Materials</i> , 2014 , 26, 6994-7017	24	150
314	Hierarchical nanocomposite of polyaniline nanorods grown on the surface of carbon nanotubes for high-performance supercapacitor electrode. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2774-2780		145
313	Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. <i>Applied Catalysis A: General</i> , 2013 , 468, 442-452	5.1	142
312	Mitochondria-Targeted Fluorescent Probe for Imaging Hydrogen Peroxide in Living Cells. <i>Analytical Chemistry</i> , 2016 , 88, 1455-61	7.8	130
311	Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-ion batteries. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 5602-8	9.5	117
310	Vacuum-dried robust bridged silsesquioxane aerogels. <i>Advanced Materials</i> , 2013 , 25, 4494-7	24	110
309	Stretchable supramolecular hydrogels with triple shape memory effect. <i>Chemical Science</i> , 2016 , 7, 6715	-67420	107
308	Study on Structure and Orientation Action of Polyurethane Nanocomposites. <i>Macromolecules</i> , 2004 , 37, 5615-5623	5.5	106

(2018-2015)

307	Intelligent rubber with tailored properties for self-healing and shape memory. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 12864-12872	13	104
306	A Conductive and Highly Deformable All-Pseudocapacitive Composite Paper as Supercapacitor Electrode with Improved Areal and Volumetric Capacitance. <i>Small</i> , 2018 , 14, e1803786	11	104
305	Investigation on sound absorption properties of kapok fibers. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2013 , 31, 521-529	3.5	103
304	Cellulose/silver nanoparticles composite microspheres: eco-friendly synthesis and catalytic application. <i>Cellulose</i> , 2012 , 19, 1239-1249	5.5	100
303	Fabrication of Stable Hollow Capsules by Covalent Layer-by-Layer Self-Assembly. <i>Macromolecules</i> , 2003 , 36, 4238-4240	5.5	99
302	A lotus-leaf-like superhydrophobic surface prepared by solvent-induced crystallization. <i>ChemPhysChem</i> , 2006 , 7, 824-7	3.2	92
301	Facile in situ synthesis of silver nanoparticles on boron nitride nanosheets with enhanced catalytic performance. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16663-16669	13	86
300	Smart enrichment and facile separation of oil from emulsions and mixtures by superhydrophobic/superoleophilic particles. <i>ACS Applied Materials & District Superhydrophobic</i> , 7, 10475-81	9.5	84
299	Facile fabrication of robust superhydrophobic porous materials and their application in oil/water separation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23252-23260	13	84
298	A water-soluble BODIPY derivative as a highly selective "Turn-On" fluorescent sensor for H2O2 sensing in vivo. <i>Biosensors and Bioelectronics</i> , 2014 , 56, 58-63	11.8	82
297	A novel and facile method to prepare porous hollow CuO and Cu nanofibers based on electrospinning. <i>CrystEngComm</i> , 2011 , 13, 4856	3.3	82
296	Rapid sintering of silver nanoparticles in an electrolyte solution at room temperature and its application to fabricate conductive silver films using polydopamine as adhesive layers. <i>Journal of Materials Chemistry</i> , 2011 , 21, 4875		82
295	Electrically conductive, mechanically robust, pH-sensitive graphene/polymer composite hydrogels. <i>Composites Science and Technology</i> , 2016 , 127, 119-126	8.6	80
294	Superelastic and ultralight polyimide aerogels as thermal insulators and particulate air filters. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 828-832	13	80
293	Fabrication of oriented hBN scaffolds for thermal interface materials. <i>RSC Advances</i> , 2016 , 6, 16489-164	19 <i>4</i> 7	79
292	Evaporation of sessile water droplets on superhydrophobic natural lotus and biomimetic polymer surfaces. <i>ChemPhysChem</i> , 2006 , 7, 2067-70	3.2	78
291	3D conductive network-based free-standing PANIRGOMWNTs hybrid film for high-performance flexible supercapacitor. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12340-12347	13	77
290	SnS Nanosheets Coating on Nanohollow Cubic CoS /C for Ultralong Life and High Rate Capability Half/Full Sodium-Ion Batteries. <i>Small</i> , 2018 , 14, e1802716	11	77

289	Preparation and activity of Cu/Zn/Al/Zr catalysts via hydrotalcite-containing precursors for methanol synthesis from CO2 hydrogenation. <i>Catalysis Science and Technology</i> , 2012 , 2, 1447	5.5	76
288	Mussel-inspired multifunctional supramolecular hydrogels with self-healing, shape memory and adhesive properties. <i>Polymer Chemistry</i> , 2016 , 7, 5343-5346	4.9	76
287	Fabrication and application of superhydrophilic surfaces: a review. <i>Journal of Adhesion Science and Technology</i> , 2014 , 28, 769-790	2	75
286	Phase change materials of paraffin in h-BN porous scaffolds with enhanced thermal conductivity and form stability. <i>Energy and Buildings</i> , 2018 , 158, 1184-1188	7	75
285	The synthesis of glycerol carbonate from glycerol and CO2 over La2O2CO3InO catalysts. <i>Catalysis Science and Technology</i> , 2013 , 3, 2801	5.5	74
284	Preparation of porous polyacrylonitrile fibers by electrospinning a ternary system of PAN/DMF/H2O. <i>Materials Letters</i> , 2010 , 64, 2407-2409	3.3	74
283	Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO2 over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M = Li, Mg and Zr) hydrotalcites. <i>Catalysis Science and Technology</i> , 2015 , 5, 989-1005	5.5	7º
282	Synthesis of Dimethyl Carbonate from Urea and Methanol over ZnO. <i>Industrial & amp; Engineering Chemistry Research</i> , 2005 , 44, 7596-7599	3.9	70
281	Chemically modified kapok fiber for fast adsorption of Pb2+, Cd2+, Cu2+ from aqueous solution. <i>Cellulose</i> , 2013 , 20, 849-860	5.5	69
280	Intracellular fluorescent temperature probe based on triarylboron substituted poly N-isopropylacrylamide and energy transfer. <i>Analytical Chemistry</i> , 2015 , 87, 3694-8	7.8	68
279	Recyclable polybutadiene elastomer based on dynamic imine bond. <i>Journal of Polymer Science Part A</i> , 2017 , 55, 2011-2018	2.5	67
278	Antifogging and antireflective silica film and its application on solar modules. <i>Surface and Coatings Technology</i> , 2011 , 206, 1490-1494	4.4	67
277	Yttrium oxide modified Cu/ZnO/Al2O3 catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. <i>Catalysis Science and Technology</i> , 2015 , 5, 4365-4377	5.5	66
276	Robust superhydrophobic bridged silsesquioxane aerogels with tunable performances and their applications. <i>ACS Applied Materials & Discrete Section</i> (1997) 1016-24	9.5	65
275	A Bodipy-based derivative for selective fluorescence sensing of homocysteine and cysteine. <i>New Journal of Chemistry</i> , 2011 , 35, 61-64	3.6	63
274	A rapid response "Turn-On" fluorescent probe for nitroreductase detection and its application in hypoxic tumor cell imaging. <i>Analyst, The</i> , 2015 , 140, 574-81	5	61
273	Superhydrophobic/Superhydrophilic Janus Fabrics Reducing Blood Loss. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1701086	10.1	60
272	A bottom-up approach to fabricate patterned surfaces with asymmetrical TiO2 microparticles trapped in the holes of honeycomblike polymer film. <i>Journal of the American Chemical Society</i> , 2011 , 133, 3736-9	16.4	60

(2018-2007)

271	Fabrication and Properties of Cellulose Hydrated Membrane with Unique Structure. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 594-602	2.6	60
270	High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2017 , 9, 42829-42835	9.5	59
269	Double-network hydrogel with high mechanical strength prepared from two biocompatible polymers. <i>Journal of Applied Polymer Science</i> , 2009 , 112, 3063-3070	2.9	59
268	The Properties of Individual Carbon Residuals and Their Influence on The Deactivation of NiCaOZrO2 Catalysts in CH4 Dry Reforming. <i>ChemCatChem</i> , 2014 , 6, 640-648	5.2	58
267	A small-angle X-ray scattering study and molecular dynamics simulation of microvoid evolution during the tensile deformation of carbon fibers. <i>Carbon</i> , 2012 , 50, 235-243	10.4	58
266	High-Yield Synthesis of Dimethyl Carbonate from Urea and Methanol Using a Catalytic Distillation Process. <i>Industrial & District Communication Process. Industrial & District Communication Process. Industrial & District Communication Chemistry Research</i> , 2007 , 46, 2683-2687	3.9	56
265	Formation of Gold Nanoparticles in the Presence of o-Anisidine and the Dependence of the Structure of Poly(o-anisidine) on Synthetic Conditions. <i>Langmuir</i> , 2002 , 18, 9010-9016	4	55
264	Highly stable mesoporous NiON2O3Al2O3 catalysts for CO2 reforming of methane: effect of Ni embedding and Y2O3 promotion. <i>Catalysis Science and Technology</i> , 2016 , 6, 449-459	5.5	54
263	Recyclable, Self-Healing, Thermadapt Triple-Shape Memory Polymers Based on Dual Dynamic Bonds. <i>ACS Applied Materials & Discounty of the Samp; Interfaces</i> , 2020 , 12, 9833-9841	9.5	52
262	The bi-functional mechanism of CH4 dry reforming over a NitaOIrO2 catalyst: further evidence via the identification of the active sites and kinetic studies. <i>Catalysis Science and Technology</i> , 2013 , 3, 2435	5.5	52
261	Design and Control of Dimethyl CarbonateMethanol Separation via Pressure-Swing Distillation. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 11463-11478	3.9	52
260	Robust Polypropylene Fabrics Super-Repelling Various Liquids: A Simple, Rapid and Scalable Fabrication Method by Solvent Swelling. <i>ACS Applied Materials & Samp; Interfaces</i> , 2015 , 7, 13996-4003	9.5	51
259	Grafting of Amines on Ethanol-Extracted SBA-15 for CO Adsorption. <i>Materials</i> , 2013 , 6, 981-999	3.5	51
258	The influence of pH on a hydrogen-bonded assembly film. <i>Soft Matter</i> , 2007 , 3, 463-469	3.6	50
257	CaOIIrO2 Solid Solution: A Highly Stable Catalyst for the Synthesis of Dimethyl Carbonate from Propylene Carbonate and Methanol. <i>Catalysis Letters</i> , 2005 , 105, 253-257	2.8	50
256	Sound absorption behavior of electrospun polyacrylonitrile nanofibrous membranes. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2011 , 29, 650-657	3.5	49
255	Solution properties of a thermosensitive triblock copolymer of N-alkyl substituted acrylamides. <i>Langmuir</i> , 2009 , 25, 1699-704	4	47
254	Microgel-Enhanced Double Network Hydrogel Electrode with High Conductivity and Stability for Intrinsically Stretchable and Flexible All-Gel-State Supercapacitor. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 19323-19330	9.5	46

253	Aerogels Derived from Polymer Nanofibers and Their Applications. <i>Macromolecular Rapid Communications</i> , 2018 , 39, e1700724	4.8	45
252	Influence of fluorine on the performance of fluorine-modified Cu/Zn/Al catalysts for CO2 hydrogenation to methanol. <i>Journal of CO2 Utilization</i> , 2013 , 2, 16-23	7.6	45
251	Pyrolysis of polymethylsilsesquioxane. <i>Journal of Applied Polymer Science</i> , 2002 , 85, 1077-1086	2.9	45
250	Dynamic multiphase semi-crystalline polymers based on thermally reversible pyrazole-urea bonds. <i>Nature Communications</i> , 2019 , 10, 4753	17.4	44
249	ABA Type Triblock Copolymer Based on Mesogen-Jacketed Liquid Crystalline Polymer: Design, Synthesis, and Potential as Thermoplastic Elastomer. <i>Macromolecules</i> , 2004 , 37, 7610-7618	5.5	44
248	Bio-inspired hollow activated carbon microtubes derived from willow catkins for supercapacitors with high volumetric performance. <i>Materials Letters</i> , 2016 , 174, 249-252	3.3	43
247	Recyclable Polydimethylsiloxane Network Crosslinked by Dynamic Transesterification Reaction. <i>Scientific Reports</i> , 2017 , 7, 11833	4.9	43
246	Kinetics and thermal properties of epoxy resins based on bisphenol fluorene structure. <i>European Polymer Journal</i> , 2009 , 45, 1941-1948	5.2	43
245	One step preparation of superhydrophobic polymeric surface with polystyrene under ambient atmosphere. <i>Journal of Colloid and Interface Science</i> , 2008 , 322, 1-5	9.3	43
244	Multistep Thermosensitivity of Poly(N-n-propylacrylamide)-block-poly(N,N-ethylmethylacrylamide) Triblock Terpolymers in Aqueous Solutions As Studied by Static and Dynamic Light Scattering.	5.5	42
243	Superstretchable Dynamic Polymer Networks. <i>Advanced Materials</i> , 2019 , 31, e1904029	24	41
242	Electromechanical polyanilineEellulose hydrogels with high compressive strength. <i>Soft Matter</i> , 2013 , 9, 10129	3.6	41
241	From zinc-cyanide hybrid coordination polymers to hierarchical yolk-shell structures for high-performance and ultra-stable lithium-ion batteries. <i>Nano Energy</i> , 2017 , 33, 168-176	17.1	40
240	Cellular graphene aerogel combines ultralow weight and high mechanical strength: A highly efficient reactor for catalytic hydrogenation. <i>Scientific Reports</i> , 2016 , 6, 25830	4.9	40
239	Water uptake behavior of hydrogen-bonded PVPON-PAA LBL film. <i>Soft Matter</i> , 2006 , 2, 699-704	3.6	40
238	Chromogenic, Fluorescent, and Redox Sensors for Multichannel Imaging and Detection of Hydrogen Peroxide in Living Cell Systems. <i>Analytical Chemistry</i> , 2018 , 90, 10152-10158	7.8	39
237	Salt-induced erosion of hydrogen-bonded layer-by-layer assembled films. <i>Soft Matter</i> , 2009 , 5, 860-867	3.6	39
236	Multifunctional polymethylsilsesquioxane (PMSQ) surfaces prepared by electrospinning at the sol-gel transition: superhydrophobicity, excellent solvent resistance, thermal stability and enhanced sound absorption property. <i>Journal of Colloid and Interface Science</i> , 2011 , 359, 296-303	9.3	38

235	Bioinspired "Skin" with Cooperative Thermo-Optical Effect for Daytime Radiative Cooling. <i>ACS Applied Materials & Applied & Applied Materials & Applied & Ap</i>	9.5	37
234	Highly Elastic Fibers Made from Hydrogen-Bonded Polymer Complex. ACS Macro Letters, 2016 , 5, 814-8	8 16 .6	37
233	Improving the stability of LiNi0.80Co0.15Al0.05O2 by AlPO4 nanocoating for lithium-ion batteries. <i>Science China Chemistry</i> , 2017 , 60, 1230-1235	7.9	37
232	Investigation of pH sensitivity of poly(acrylic acid-co-acrylamide) hydrogel. <i>Polymer International</i> , 2003 , 52, 1153-1157	3.3	37
231	Effect of various alkaline agents on the size and morphology of nano-sized HKUST-1 for CO2 adsorption. <i>RSC Advances</i> , 2015 , 5, 27901-27911	3.7	36
230	Controlled Synthesis of Co@N-Doped Carbon by Pyrolysis of ZIF with 2-Aminobenzimidazole Ligand for Enhancing Oxygen Reduction Reaction and the Application in Zn-Air Battery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 11693-11701	9.5	36
229	Multiple stimuli-responsive selenium-functionalized biodegradable starch-based hydrogels. <i>Soft Matter</i> , 2018 , 14, 921-926	3.6	36
228	Preparation, Stabilization and Carbonization of a Novel Polyacrylonitrile-Based Carbon Fiber Precursor. <i>Polymers</i> , 2019 , 11,	4.5	36
227	Surface-modified Improvement in Catalytic Performance of Cr(salen) Complexes Immobilized on MCM-41 in Solvent-Free Selective Oxidation of Benzyl Alcohol. <i>Catalysis Letters</i> , 2007 , 119, 87-94	2.8	36
226	Fabrication and Characterization of an Organic-Inorganic Gradient Surface made by Polymethylsilsesquioxane (PMSQ). <i>Macromolecular Rapid Communications</i> , 2006 , 27, 1603-1607	4.8	36
225	A novel "Turn-On" fluorescent probe for F(-) detection in aqueous solution and its application in live-cell imaging. <i>Analytica Chimica Acta</i> , 2014 , 849, 36-42	6.6	35
224	Citrate modified ferrihydrite microstructures: facile synthesis, strong adsorption and excellent Fenton-like catalytic properties. <i>RSC Advances</i> , 2014 , 4, 21575-21583	3.7	35
223	Micro-nano hierarchically structured nylon 6,6 surfaces with unique wettability. <i>Journal of Colloid and Interface Science</i> , 2010 , 345, 116-9	9.3	35
222	Low-cost mussel inspired poly(catechol/polyamine) coating with superior anti-corrosion capability on copper. <i>Journal of Colloid and Interface Science</i> , 2016 , 463, 214-21	9.3	34
221	Nanoscale dynamic mechanical imaging of the skindore difference: From PAN precursors to carbon fibers. <i>Materials Letters</i> , 2014 , 128, 417-420	3.3	34
220	Dual-functional fluorescent probe responds to hypochlorous acid and SO derivatives with different fluorescence signals. <i>Talanta</i> , 2017 , 165, 625-631	6.2	33
219	Modified Zinc Oxide for the Direct Synthesis of Propylene Carbonate from Propylene Glycol and Carbon dioxide. <i>Catalysis Letters</i> , 2007 , 118, 290-294	2.8	33
218	Enhanced thermochemical CO2 splitting over Mg- and Ca-doped ceria/zirconia solid solutions. <i>RSC Advances</i> , 2014 , 4, 5583	3.7	32

217	Facile preparation of hollow amino-functionalized organosilica microspheres by a template-free method. <i>Journal of Materials Chemistry</i> , 2012 , 22, 18010		31
216	Transport of Glucose and Poly(ethylene glycol)s in Agarose Gels Studied by the Refractive Index Method. <i>Macromolecules</i> , 2005 , 38, 5236-5242	5.5	31
215	Amphiphilic Graphene Aerogel with High Oil and Water Adsorption Capacity and High Contact Area for Interface Reaction. <i>ACS Applied Materials & Early Interfaces</i> , 2019 , 11, 22794-22800	9.5	30
214	Reversible swelling-shrinking behavior of hydrogen-bonded free-standing thin film stabilized by catechol reaction. <i>Langmuir</i> , 2015 , 31, 5147-54	4	29
213	Ultrahigh-Strength Ultrahigh Molecular Weight Polyethylene (UHMWPE)-Based Fiber Electrode for High Performance Flexible Supercapacitors. <i>Advanced Functional Materials</i> , 2018 , 28, 1707351	15.6	29
212	Fabrication of RGO-NiCoO nanorods composite from deep eutectic solvents for nonenzymatic amperometric sensing of glucose. <i>Talanta</i> , 2018 , 185, 335-343	6.2	29
211	A Simple Approach for Fabricating a Superhydrophobic Surface Based on Poly(Methyl Methacrylate). <i>Journal of Adhesion Science and Technology</i> , 2008 , 22, 1841-1852	2	29
210	Cu/Mn/ZrO2 catalyst for alcohol synthesis by Fischer-Tropsch modified elements. <i>Reaction Kinetics and Catalysis Letters</i> , 2002 , 75, 297-304		29
209	Dynamic cross-links to facilitate recyclable polybutadiene elastomer with excellent toughness and stretchability. <i>Journal of Polymer Science Part A</i> , 2016 , 54, 1357-1366	2.5	28
208	CO2 splitting via two step thermochemical reactions over doped ceria/zirconia solid solutions. <i>RSC Advances</i> , 2013 , 3, 18878	3.7	28
207	Liquid marble-derived solid-liquid hybrid superparticles for CO capture. <i>Nature Communications</i> , 2019 , 10, 1854	17.4	27
206	Performance of the LaMnIntuD Based Perovskite Precursors for Methanol Synthesis from CO2 Hydrogenation. <i>Catalysis Letters</i> , 2015 , 145, 1177-1185	2.8	27
205	Antimonene Engineered Highly Deformable Freestanding Electrode with Extraordinarily Improved Energy Storage Performance. <i>Advanced Energy Materials</i> , 2019 , 9, 1902462	21.8	27
204	Carbon Dioxide Capture by MgO-modified MCM-41 Materials. <i>Adsorption Science and Technology</i> , 2009 , 27, 593-601	3.6	27
203	Complex of polyelectrolyte network with surfactant as novel shape memory networks. <i>Chemical Communications</i> , 2001 , 1694-5	5.8	27
202	A mitochondria-targeting nitroreductase fluorescent probe with large Stokes shift and long-wavelength emission for imaging hypoxic status in tumor cells. <i>Analytica Chimica Acta</i> , 2020 , 1103, 202-211	6.6	27
201	Fire-resistant, ultralight, superelastic and thermally insulated polybenzazole aerogels. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 20769-20777	13	27
200	Functional bacterial cellulose membranes with 3D porous architectures: Conventional drying, tunable wettability and water/oil separation. <i>Journal of Membrane Science</i> , 2019 , 591, 117312	9.6	26

(2016-2011)

199	Recent progress in phosgene-free methods for synthesis of dimethyl carbonate. <i>Pure and Applied Chemistry</i> , 2011 , 84, 603-620	2.1	26	
198	Fabrication of honeycomb-patterned polyalkylcyanoacrylate films from monomer solution by breath figures method. <i>Journal of Colloid and Interface Science</i> , 2010 , 350, 253-9	9.3	26	
197	Effective synthesis of propylene carbonate from propylene glycol and carbon dioxide by alkali carbonates. <i>Catalysis Letters</i> , 2006 , 112, 187-191	2.8	26	
196	Carbon nanotube/poly(2,4-hexadiyne-1,6-diol) nanocomposites prepared with the aid of supercritical CO2. <i>Chemical Communications</i> , 2004 , 2190-1	5.8	26	
195	Ultra Water Repellent Polypropylene Surfaces with Tunable Water Adhesion. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 10224-10232	9.5	25	
194	Facile preparation of poly(ethyl alpha-cyanoacrylate) superhydrophobic and gradient wetting surfaces. <i>Journal of Colloid and Interface Science</i> , 2009 , 340, 93-7	9.3	25	
193	Nitrogen-functionalized reduced graphene oxide as carbocatalysts with enhanced activity for polyaromatic hydrocarbon hydrogenation. <i>Catalysis Science and Technology</i> , 2017 , 7, 1217-1226	5.5	24	
192	Biomimetic Polymer Film with Brilliant Brightness Using a One-Step Water VaporInduced Phase Separation Method. <i>Advanced Functional Materials</i> , 2019 , 29, 1808885	15.6	24	
191	Cocatalyst designing: a binary noble-metal-free cocatalyst system consisting of ZnInS and In(OH) for efficient visible-light photocatalytic water splitting <i>RSC Advances</i> , 2018 , 8, 4979-4986	3.7	24	
190	Facile fabrication of golf ball-like hollow microspheres of organic-inorganic silica. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13056		24	
189	Annealing of supporting layer to develop nanofiltration membrane with high thermal stability and ion selectivity. <i>Journal of Membrane Science</i> , 2015 , 476, 475-482	9.6	23	
188	Influence of element doping on LaMntut based perovskite precursors for methanol synthesis from CO2/H2. <i>RSC Advances</i> , 2014 , 4, 48888-48896	3.7	23	
187	Synthesis and Low-Temperature CO2 Capture Properties of a Novel Mg@r Solid Sorbent. <i>Energy & Energy Fuels</i> , 2013 , 27, 5407-5415	4.1	23	
186	Preparation of kapokpolyacrylonitrile coreBhell composite microtube and its application as gold nanoparticles carrier. <i>Applied Surface Science</i> , 2012 , 258, 2876-2882	6.7	23	
185	Effect of Pt Impregnation on a Precipitated Iron-based Fischer Tropsch Synthesis Catalyst. <i>Catalysis Letters</i> , 2008 , 125, 116-122	2.8	23	
184	Skin-Inspired Double-Hydrophobic-Coating Encapsulated Hydrogels with Enhanced Water Retention Capacity. <i>Advanced Functional Materials</i> , 2021 , 31, 2102433	15.6	23	
183	Phase transition of silica in the TMB-P123-H2O-TEOS quadru-component system: a feasible route to different mesostructured materials. <i>Journal of Colloid and Interface Science</i> , 2014 , 433, 176-182	9.3	22	
182	Biomimetic Gradient Polymers with Enhanced Damping Capacities. <i>Macromolecular Rapid Communications</i> , 2016 , 37, 655-61	4.8	22	

181	A gold nanocluster-based ratiometric fluorescent probe for cysteine and homocysteine detection in living cells. <i>New Journal of Chemistry</i> , 2017 , 41, 4416-4423	3.6	21
180	Synthesis and characterization of new aramids based on o-(m-triphenyl)-terephthaloyl chloride and m-(m-triphenyl)-isophthaloyl chloride. <i>Polymer</i> , 2017 , 109, 49-57	3.9	21
179	Enhanced CO2 Adsorption Capacity and Hydrothermal Stability of HKUST-1 via Introduction of Siliceous Mesocellular Foams (MCFs). <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 7950-7	937	21
178	Nanofibers-based nanoweb promise superhydrophobic polyaniline: from star-shaped to leaf-shaped structures. <i>Journal of Colloid and Interface Science</i> , 2013 , 409, 255-8	9.3	21
177	Superhydrophobicity determines the buoyancy performance of kapok fiber aggregates. <i>Applied Surface Science</i> , 2013 , 266, 225-229	6.7	20
176	2D SAXS/WAXD analysis of pan carbon fiber microstructure in organic/inorganic transformation. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2013 , 31, 823-832	3.5	20
175	Cast-and-Use Super Black Coating Based on Polymer-Derived Hierarchical Porous Carbon Spheres. <i>ACS Applied Materials & Description of the ACS Applied Mate</i>	9.5	19
174	Synthesis and CO2 capture properties of mesoporous MgAl(O) sorbent. <i>RSC Advances</i> , 2014 , 4, 47012-4	79 <mark>7</mark> 0	19
173	One step preparation of polyaniline micro/nanohierarchical structures with superhydrophobicity. <i>Materials Letters</i> , 2012 , 78, 42-45	3.3	19
172	Directional and path-finding motion of polymer hydrogels driven by liquid mixing. <i>Langmuir</i> , 2012 , 28, 11276-80	4	19
171	Preparation, curing kinetics, and thermal properties of bisphenol fluorene epoxy resin. <i>Journal of Applied Polymer Science</i> , 2007 , 106, 1476-1481	2.9	19
170	Simultaneous tuning of chemical composition and topography of copolymer surfaces: micelles as building blocks. <i>ChemPhysChem</i> , 2007 , 8, 1108-14	3.2	19
169	Pentaethylenehexamine-Loaded Hierarchically Porous Silica for COlAdsorption. <i>Materials</i> , 2016 , 9,	3.5	19
168	Facile fabrication of flexible layered GO/BNNS composite films with high thermal conductivity. Journal of Materials Science, 2018 , 53, 4189-4198	4.3	18
167	Fabrication of Conductive Silver Microtubes Using Natural Catkin as a Template. <i>ACS Omega</i> , 2017 , 2, 1738-1745	3.9	17
166	Effect of pore geometries on the catalytic properties of NiOAl2O3 catalysts in CO2 reforming of methane. <i>RSC Advances</i> , 2015 , 5, 21090-21098	3.7	17
165	Air-expansion induced hierarchically porous carbonaceous aerogels from biomass materials with superior lithium storage properties. <i>RSC Advances</i> , 2016 , 6, 7591-7598	3.7	17
164	Triboelectric nanogenerators made of polybenzazole aerogels as fire-resistant negative tribo-materials. <i>Nano Energy</i> , 2019 , 64, 103900	17.1	17

163	Interaction of Sulfonated Calix[n]arenes with Rhodamine B and Its Application to Determine Acetylcholine in a Real Neutral Aqueous Medium. <i>Chinese Journal of Chemistry</i> , 2010 , 20, 322-326	4.9	17
162	Responsive complex capsules prepared with polymerization of dopamine, hydrogen-bonding assembly, and catechol dismutation. <i>Journal of Colloid and Interface Science</i> , 2018 , 513, 470-479	9.3	16
161	SDBS-assisted preparation of novel polyaniline planar-structure: morphology, mechanism and hydrophobicity. <i>Journal of Colloid and Interface Science</i> , 2014 , 414, 46-9	9.3	16
160	Controllable Preparation of Hierarchical ZnO Nanocages and its Oxygen Vacancy through the Nanoscale Kirkendall Process. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 771-778	3.1	16
159	Self-organized polymer aggregates with a biomimetic hierarchical structure and its superhydrophobic effect. <i>Cell Biochemistry and Biophysics</i> , 2007 , 49, 91-7	3.2	16
158	Synthesis and characterization of polystyrene-b-poly(ethylene oxide)-b-polystyrene triblock copolymers by atom-transfer radical polymerization. <i>Journal of Applied Polymer Science</i> , 2000 , 77, 2882-	· 288 8	16
157	One-pot synthesis of hierarchical Co1\(\text{NC} \) NC\(\text{MOS2/C} \) hollow nanofibers based on one-dimensional metal coordination polymers for enhanced lithium and sodium-ion storage. <i>Science Bulletin</i> , 2020 , 65, 1460-1469	10.6	16
156	Porous Co3O4 nanoplates as an efficient electromaterial for non-enzymatic glucose sensing. CrystEngComm, 2020 , 22, 35-43	3.3	16
155	A one-step aqueous route to prepare polyacrylonitrile-based hydrogels with excellent ionic conductivity and extreme low temperature tolerance. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 22090-2	22099	16
154	Manipulating the surface wettability of polysaccharide based complex membrane for oil/water separation. <i>Carbohydrate Polymers</i> , 2019 , 225, 115231	10.3	15
153	Characterization of maxillofacial silicone elastomer reinforced with different hollow microspheres. Journal of Materials Science, 2015 , 50, 3976-3983	4.3	15
152	Hollow Al2O3 spheres prepared by a simple and tunable hydrothermal method. <i>RSC Advances</i> , 2015 , 5, 13385-13391	3.7	15
151	Facile fabrication of large scale microtubes with a natural template [Kapok fiber. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2010 , 28, 841-847	3.5	15
150	Synthesis and structure of polymethylsilsesquioxanellay nanocomposite via in situ intercalative polymerization. <i>Journal of Applied Polymer Science</i> , 2002 , 86, 3708-3711	2.9	15
149	Photo-induced DNA cleavage in self-assembly multilayer films. New Journal of Chemistry, 2002, 26, 617-	620	15
148	Complex membrane of cellulose and chitin nanocrystals with cationic guar gum for oil/water separation. <i>Journal of Applied Polymer Science</i> , 2019 , 136, 47947	2.9	14
147	A novel colorimetric and fluorometric anion sensor based on BODIPY-calix[4]pyrrole conjugate. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2012 , 72, 95-101		14
146	Synthesis of amine-modified mesoporous materials for CO2 capture by a one-pot template-free method. <i>Journal of Sol-Gel Science and Technology</i> , 2013 , 66, 353-362	2.3	14

145	Relationship between performance and microvoids of aramid fibers revealed by two-dimensional small-angle X-ray scattering. <i>Journal of Applied Crystallography</i> , 2013 , 46, 1178-1186	3.8	14
144	Self-assembly of flower-like polyanilinepolyvinyl alcohol multidimensional architectures from 2D petals. <i>Materials Letters</i> , 2011 , 65, 2812-2815	3.3	14
143	A self-assembly strategy for fabricating highly stable silicon/reduced graphene oxide anodes for lithium-ion batteries. <i>New Journal of Chemistry</i> , 2016 , 40, 8961-8968	3.6	14
142	Coaxial electrospinning core-shell fibers for self-healing scratch on coatings. <i>Chinese Chemical Letters</i> , 2019 , 30, 157-159	8.1	14
141	Solvent-Free Production of Isosorbide from Sorbitol Catalyzed by a Polymeric Solid Acid. <i>ChemSusChem</i> , 2019 , 12, 4986-4995	8.3	13
140	A facile approach to superhydrophobic coating from direct polymerization of Buper glue[] <i>Soft Matter</i> , 2011 , 7, 4050	3.6	13
139	Simulation of Sessile Water-Droplet Evaporation on Superhydrophobic Polymer Surfaces. <i>Chinese Journal of Chemical Physics</i> , 2007 , 20, 140-144	0.9	13
138	An HBT-based fluorescent dye with enhanced quantum yield in water system and its application for constructing NQO1 fluorescent probe. <i>Talanta</i> , 2020 , 216, 120982	6.2	13
137	Preparation and electrochemical characteristics of electrospun water-soluble resorcinol/phenol-formaldehyde resin-based carbon nanofibers. <i>RSC Advances</i> , 2015 , 5, 40884-40891	3.7	12
136	Synthesis and electrochemical properties of various dimensional polyaniline micro/nanostructures: Microdisks, nanospheres and nanofibers. <i>Materials Letters</i> , 2012 , 71, 70-73	3.3	12
135	Rationally Turning the Interface Activity of Mesoporous Silicas for Preparing Pickering Foam and "Dry Water". <i>Langmuir</i> , 2017 , 33, 9025-9033	4	12
134	Blue Laser Projection Printing of Conductive Complex 2D and 3D Metallic Structures from Photosensitive Precursors. <i>ACS Applied Materials & District Research</i> , 11, 21668-21674	9.5	11
133	General Surface Modification Method for Nanospheres via Tannic Acid-Fe Layer-by-Layer Deposition: Preparation of a Magnetic Nanocatalyst. <i>ACS Applied Nano Materials</i> , 2019 , 2, 3510-3517	5.6	11
132	Competitive self-assembly driven as a route to control the morphology of poly(tannic acid) assemblies. <i>Nanoscale</i> , 2019 , 11, 4751-4758	7.7	11
131	Recognition and sensing of AcOland Flusing a calix[4]pyrrole-derived hydrazone: a potential molecular keypad lock. <i>RSC Advances</i> , 2014 , 4, 34470-34473	3.7	11
130	A superhydrophobic surface with high performance derived from STA-APTES organic-inorganic molecular hybrid. <i>Journal of Colloid and Interface Science</i> , 2013 , 407, 482-7	9.3	11
129	Self-assembly hierarchical micro/nanostructures of leaf-like polyaniline with 1D nanorods on 2D foliage surface. <i>Materials Letters</i> , 2011 , 65, 2724-2727	3.3	11
128	Morphology and Crystalline Structure of Poly(ECaprolactone) Nanofiber via Porous Aluminium Oxide Template. <i>Macromolecular Materials and Engineering</i> , 2006 , 291, 1098-1103	3.9	11

127	Ultrathin Nanosheet-Assembled, Phosphate Ion-Functionalized NiO Microspheres as Efficient Supercapacitor Materials. <i>ACS Applied Energy Materials</i> , 2020 , 3, 9980-9988	6.1	11
126	Construction of a selective electrochemical sensing solid I quid interface for the selective detection of fluoride ion in water with bis (indolyl) methane-functionalized multi-walled carbon nanotubes. <i>New Journal of Chemistry</i> , 2017 , 41, 14246-14252	3.6	10
125	Precise preparation of highly monodisperse ZrO2@SiO2 coreEhell nanoparticles with adjustable refractive indices. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 3359	7.1	10
124	Noncovalent fabrication and electrochemical capacitance of uniform corellhell structured polyaniline larbon nanotube nanocomposite. <i>RSC Advances</i> , 2012 , 2, 11887	3.7	10
123	A sandwich anion receptor by a BODIPY dye bearing two calix[4]pyrrole units. <i>Chemical Papers</i> , 2011 , 65,	1.9	10
122	Synthesis of composites of silicon rubber and polystyrene using supercritical CO2 as a swelling agent. <i>Journal of Materials Chemistry</i> , 2002 , 12, 2688-2691		10
121	Numerical Simulation of CO2 Adsorption on K-Based Sorbent. <i>Energy & Control of Co2 Adsorption on K-Based Sorbent</i> . <i>Energy & Control of Co2 Adsorption on K-Based Sorbent</i> . <i>Energy & Control of Co2 Adsorption on K-Based Sorbent</i> . <i>Energy & Control of Co2 Adsorption on K-Based Sorbent</i> . <i>Energy & Control of Co2 Adsorption on K-Based Sorbent</i> .	4.1	10
120	Highly Hierarchical Porous Ultrathin Co3O4 [email[protected] Foam for High-Performance Supercapacitors. <i>ACS Applied Energy Materials</i> , 2021 , 4, 1619-1627	6.1	10
119	Spherically aggregated Cu2OIIA hybrid sub-microparticles with modulated size and improved chemical stability. <i>CrystEngComm</i> , 2017 , 19, 1888-1895	3.3	9
118	Effect of water content on the size and membrane thickness of polystyrene-block-poly(ethylene oxide) vesicles. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2015 , 33, 661-668	3.5	9
117	Facile fabrication of metal oxide hollow spheres using polydopamine nanoparticles as active templates. <i>Polymer International</i> , 2015 , 64, 986-991	3.3	9
116	Blue laser diode-initiated photosensitive resins for 3D printing. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 12035-12038	7.1	9
115	Effective and Green Synthesis of Methyl Pyrrole-1-carboxylate with Dimethyl Carbonate Over Solid Base. <i>Catalysis Letters</i> , 2008 , 120, 299-302	2.8	9
114	Reprintable Polymers for Digital Light Processing 3D Printing. <i>Advanced Functional Materials</i> , 2021 , 31, 2007173	15.6	9
113	Photoinduced Spontaneous Formation of a Reduced Graphene Oxide-Enwrapped Cu-CuO Nanocomposite for Solar Hydrogen Evolution. <i>ACS Applied Materials & District Materials & Distric</i>	845	9
112	Lithium-Conducting Branched Polymers: New Paradigm of Solid-State Electrolytes for Batteries. <i>Nano Letters</i> , 2021 , 21, 7435-7447	11.5	9
111	An Extremely Stretchable and Self-Healable Supramolecular Polymer Network. <i>ACS Applied Materials & Discourt & Discourt Materials & Discourt & Dis</i>	9.5	9
110	Fabrication of oriented wrinkles on polydopamine/polystyrene bilayer films. <i>Journal of Colloid and Interface Science</i> , 2017 , 498, 123-127	9.3	8

109	Effect of microgel content on the shear and extensional rheology of polyacrylonitrile solution. <i>Colloid and Polymer Science</i> , 2015 , 293, 587-596	2.4	8
108	Robust anti-reflective silica nanocoatings: abrasion resistance enhanced via capillary condensation of APTES. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 4254-4259	7.1	8
107	Carbon Vesicles: A Symmetry-Breaking Strategy for Wide-Band and Solvent-Processable Ultrablack Coating Materials. <i>Advanced Functional Materials</i> , 2020 , 30, 1909877	15.6	8
106	Cu nanocrystal enhancement of C3N4/Cu hetero-structures and new applications in photo-electronic catalysis: hydrazine oxidation and redox reactions of organic molecules. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 2420-2424	6.8	8
105	Outgassing analysis of molecular glass photoresists under EUV irradiation. <i>Science China Chemistry</i> , 2014 , 57, 1746-1750	7.9	8
104	Interfacial complexation behavior of anionic and cationic cellulose derivatives. <i>RSC Advances</i> , 2014 , 4, 55459-55465	3.7	8
103	A unique behavior of water drops induced by low-density polyethylene surface with a sharp wettability transition. <i>Journal of Colloid and Interface Science</i> , 2007 , 311, 186-93	9.3	8
102	Stability of high-bandwidth graded-index polymer optical fiber. <i>Journal of Applied Polymer Science</i> , 2004 , 91, 2330-2334	2.9	8
101	An HBT-based fluorescent probe for nitroreductase determination and its application in Escherichia coli cell imaging. <i>New Journal of Chemistry</i> , 2020 , 44, 16265-16268	3.6	8
100	A versatile coating approach to fabricate superwetting membranes for separation of water-in-oil emulsions. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2016 , 34, 1234-1239	3.5	8
99	Effects of ultra-high temperature treatment on the microstructure of carbon fibers. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2017 , 35, 764-772	3.5	7
98	Cellulose derivative-lanthanide complex film by hierarchical assembly process. <i>Carbohydrate Polymers</i> , 2017 , 168, 240-246	10.3	7
97	Aerobic Oxidation of Fluorene to Fluorenone over Copper-Doped Co3O4 with a High Specific Surface Area. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 2568-2576	8.3	7
96	Conformal Nanocoatings with Uniform and Controllable Thickness on Microstructured Surfaces: A General Assembly Route. <i>Advanced Materials</i> , 2018 , 30, 1704131	24	7
95	Selective Oxidation of Glycerol to Dihydroxyacetone over Au/CuZrO Catalysts in Base-Free Conditions. <i>ACS Applied Materials & Acs Applied & Acs </i>	9.5	7
94	A BODIPY based indicator for fluorogenic detection of salicylaldehyde with offon emission. <i>Analytical Methods</i> , 2014 , 6, 6531-6535	3.2	7
93	Preparation of carpenterworm-like polyaniline/carbon nanotubes nanocomposites with enhanced electrochemical property. <i>Materials Letters</i> , 2013 , 92, 157-160	3.3	7
92	Enhancement of composite-metal interfacial adhesion strength by dendrimer. <i>Surface and Interface Analysis</i> , 2011 , 43, 726-733	1.5	7

(2018-2010)

91	Fe-Mo Catalysts with High Resistance to Carbon Deposition During Fischer Tropsch Synthesis. <i>Catalysis Letters</i> , 2010 , 139, 123-128	2.8	7
90	Conformation of amphiphilic branch chain in copolymer surfactants on interface. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1997 , 35, 827-830	2.6	7
89	Siloxane surfactant-modified clay and its effect in reinforcing the laminate of polymethylsilsesquioxane. <i>Journal of Applied Polymer Science</i> , 2006 , 100, 3974-3980	2.9	7
88	Cu2O-clay composites with sub-micrometer-sized Cu2O particles for marine antifouling paints 2019 , 16, 25-30		7
87	The effects of calcination temperature of support on Au/CuO-ZrO catalysts for oxidation of glycerol to dihydroxyacetone. <i>Journal of Colloid and Interface Science</i> , 2020 , 560, 130-137	9.3	7
86	Digital Light Processing 3D Printing of Healable and Recyclable Polymers with Tailorable Mechanical Properties. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 , 13, 34954-34961	9.5	7
85	A hydrophilicity-based fluorescent strategy to differentiate cysteine/homocysteine over glutathione both in vivo and in vitro. <i>RSC Advances</i> , 2017 , 7, 5549-5553	3.7	6
84	A Study on the Order of Calcination and Liquid Reduction over Cu-Based Catalyst for Synthesis of Methanol from CO2/H2. <i>Catalysis Letters</i> , 2017 , 147, 1235-1242	2.8	6
83	Aerobic oxidation of fluorene to fluorenone over Collu bimetal oxides. <i>New Journal of Chemistry</i> , 2019 , 43, 8428-8438	3.6	6
82	Highly sensitive qualitative and quantitative detection of saturated fatty aldehydes in edible vegetable oils using a "turn-on" fluorescent probe by high performance liquid chromatography. <i>Journal of Chromatography A</i> , 2020 , 1621, 461063	4.5	6
81	Simulating the growth process of aromatic polyamide layer by monomer concentration controlling method. <i>Applied Surface Science</i> , 2014 , 314, 286-291	6.7	6
80	Macro kinetics for synthesis of dimethyl carbonate from urea and methanol on Zn-containing catalyst. <i>Journal of Central South University</i> , 2012 , 19, 85-92	2.1	6
79	Mechanically robust aerogels derived from an amine-bridged silsesquioxane precursor. <i>Journal of Sol-Gel Science and Technology</i> , 2015 , 75, 519-529	2.3	6
78	Patterned polymer surfaces with wetting contrast prepared by polydopamine modification. <i>Journal of Applied Polymer Science</i> , 2014 , 131, n/a-n/a	2.9	6
77	Polymethylsilsesquioxane and hydroxyl-terminated polydimethylsiloxane composite: Vapor incubation before thermal curing. <i>Journal of Applied Polymer Science</i> , 2009 , 111, 1454-1461	2.9	6
76	SYNTHESIS AND CHARACTERIZATION OF POLY(BUTYL ACRYLATE-CO-METHYL METHACRYLATE)/CLAY NANOCOMPOSITES VIA EMULSION POLYMERIZATION. <i>International Journal of Nanoscience</i> , 2006 , 05, 291-297	0.6	6
75	Methoxycarbonylation of 1,6-hexanediamine with dimethyl carbonate to dimethylhexane-1,6-dicarbamate over Zn/SiO2 catalyst. <i>RSC Advances</i> , 2016 , 6, 51446-51455	3.7	6
74	Molecular Glass Photoresists with High Resolution, Low LER, and High Sensitivity for EUV Lithography. <i>Macromolecular Materials and Engineering</i> , 2018 , 303, 1700654	3.9	6

73	Preparation of recyclable polybutadiene rubber based on acidBase complexation. <i>Journal of Applied Polymer Science</i> , 2017 , 134, 45280	2.9	5
72	Dimethyl carbonate synthesis over solid base catalysts derived from CaAl layered double hydroxides. <i>Chemical Papers</i> , 2018 , 72, 1963-1971	1.9	5
71	Folding and birefringence behavior of poly(vinyl alcohol) hydrogel film induced by freezing and thawing. <i>RSC Advances</i> , 2014 , 4, 49861-49865	3.7	5
70	Initiator Concentration Effect on Rheological Properties of a pH-Sensitive Semi-IPN Hydrogel Based on Konjac Glucomannan and Methacrylic Acid. <i>Advanced Materials Research</i> , 2012 , 627, 730-733	0.5	5
69	Sequence combining of pulsed lasers using refraction-beam-displacement. <i>Applied Optics</i> , 2013 , 52, 208	3-11. 1 7	5
68	Diffusion of levofloxacin mesylate in agarose hydrogels monitored by a refractive-index method. Journal of Applied Polymer Science, 2011 , 122, 3000-3006	2.9	5
67	Molecular weight switchable polyurethanes enable melt processing. <i>Chemical Engineering Journal</i> , 2020 , 384, 123287	14.7	5
66	Co/Co9S8@carbon nanotubes on a carbon sheet: facile controlled synthesis, and application to electrocatalysis in oxygen reduction/oxygen evolution reactions, and to a rechargeable Zn-air battery. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 368-375	6.8	5
65	Transparent Super-Repellent Surfaces with Low Haze and High Jet Impact Resistance. <i>ACS Applied Materials & Acs Applied & Acs Applie</i>	9.5	5
64	Polyester Nanofilms with Enhanced Polyhydroxyl Architectures for the Separation of Metal Ions from Aqueous Solutions. <i>ACS Applied Nano Materials</i> , 2018 , 1, 6176-6186	5.6	5
63	Vertical growth of nickel sulfide nanosheets on graphene oxide for advanced sodium-ion storage. <i>Carbon</i> , 2021 , 182, 194-202	10.4	5
62	Superior Hard but Quickly Reversible Si-O-Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings <i>Journal of the American Chemical Society</i> , 2021 ,	16.4	5
61	In-Situ Growth of Au on KTaO Sub-Micron Cubes via Wet Chemical Approach for Enhanced Photodegradation of p-Nitrophenol. <i>Materials</i> , 2019 , 12,	3.5	4
60	Investigation of the Cyclization Mechanism of Poly(acrylonitrile-co-ethylenesulfonic acid) Copolymer during Thermal Oxidative Stabilization by In Situ Infrared Spectroscopy. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 9519-9531	3.9	4
59	Hydrothermal treatment of polyamide 6 with presence of lanthanum chloride. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2016 , 34, 399-406	3.5	4
58	A colorimetric and fluorometric fluoride sensor based on a BODIPY-phenol conjugate. <i>Science China Chemistry</i> , 2011 , 54, 797-801	7.9	4
57	Electrically induced linear locomotion of polymer gel in air. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2007 , 45, 1187-1197	2.6	4
56	Novel transmittance change of polyelectrolyte hydrogel in DC electric field. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2003 , 41, 2290-2295	2.6	4

(2020-2005)

55	Investigation of the sub-melting-temperature exotherm in melt-quenched polyamide-6/clay nanocomposites. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2005 , 43, 378-382	2.6	4
54	Preparation of polytetrahydrofuran monomethacrylate macromonomers by cationic ring-opening polymerization of tetrahydrofuran. <i>Journal of Applied Polymer Science</i> , 2000 , 77, 810-815	2.9	4
53	XPS investigation of water-soluble copolymer surfactants on interface. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 1999 , 37, 2297-2302	2.6	4
52	Combining Zn0.76Co0.24S with S-doped graphene as high-performance anode materials for lithium- and sodium-ion batteries. <i>Nanotechnology Reviews</i> , 2020 , 9, 1227-1236	6.3	4
51	Thermoresponsive self-healable and recyclable polymer networks based on a dynamic quinone methidethiol chemistry. <i>Polymer Chemistry</i> , 2020 , 11, 6157-6162	4.9	4
50	Preparation of a PB@SiO2 Photonic Crystal Composite with Enhanced Electrochromic Performance. ACS Applied Electronic Materials,	4	4
49	Engineering 3D electron and ion transport channels by constructing sandwiched holey quaternary metal oxide nanosheets for high-performance flexible energy storage. <i>Science China Materials</i> , 2020 , 63, 1719-1730	7.1	3
48	Long-term Thermo-oxidative Degradation Modeling of a Carbon Fiber Reinforced Polyimide Composite: Multistep Degradation Behaviors and Kinetics. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2020 , 38, 1202-1213	3.5	3
47	Dual-Tunable Structural Colors from Liquid-Infused Aerogels. Advanced Optical Materials, 2020, 8, 1901	82.5	3
46	Facile preparation and characterization of soluble aramid. <i>Journal of Applied Polymer Science</i> , 2018 , 135, 4634159	2.9	3
45	Facile preparation of bridged silsesquioxane microspheres with interconnected multi-cavities and open holes. <i>RSC Advances</i> , 2016 , 6, 21571-21576	3.7	3
44	Diesel from Syngas123-139		3
43	Optical investigation of diffusion of levofloxacin mesylate in agarose hydrogel. <i>Journal of Biomedical Optics</i> , 2009 , 14, 050503	3.5	3
42	Hydrogenolysis of glycerol to 1,2-propanediol catalyzed by Cu-H4SiW12O40/Al2O3 in liquid phase. <i>Journal of Chemical Technology and Biotechnology</i> , 2010 , 85, n/a-n/a	3.5	3
41	Investigation into Molecular Diffusion in Hydrogels Using the Refractive Index Method. <i>Macromolecular Rapid Communications</i> , 2002 , 23, 968-971	4.8	3
40	Plasmonic Metal Nanoparticle Loading to Enhance the Photothermal Conversion of Carbon Fibers. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 2454-2462	3.8	3
39	A polyaniline-modified electrode surface for boosting the electrocatalysis towards the hydrogen evolution reaction and ethanol oxidation reaction. <i>Chemical Communications</i> , 2021 ,	5.8	3
38	Synthesis of Fe3C@porous carbon nanorods via carbonizing Fe complexes for oxygen reduction reaction and ZnEir battery. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 889-896	6.8	3

37	Zn/Al/Pb Mixed Oxides as Efficient Heterogeneous Catalysts for the Synthesis of Methyl -Phenyl Carbamate. <i>ACS Omega</i> , 2020 , 5, 22529-22535	3.9	3
36	Synthesis of CeO2-ZrO2 Solid Solutions for Thermochemical CO2 Splitting. <i>Energy Technology</i> , 2019 , 7, 1800890	3.5	3
35	Regulating dielectric performances of Poly(vinylidene fluoride) nanocomposites by individually controlling shell thickness of Core@Double-Shells structured nanowires. <i>IET Nanodielectrics</i> , 2021 , 4, 11-20	2.8	3
34	Nano-structured Hollow Carbon Materials from a Non-isothermal Chemical Vapor Deposition of Polyphenols. <i>Chinese Journal of Chemistry</i> , 2020 , 38, 590-594	4.9	2
33	TiO2 nanoscale ionic materials using mussel adhesive proteins inspired ligand. <i>Applied Surface Science</i> , 2018 , 459, 606-611	6.7	2
32	Preparation and properties of organic i horganic hybrid composites based on polystyrene and an incompletely condensed polyvinylsilsesquioxane oligomer. <i>Journal of Applied Polymer Science</i> , 2010 , 117, NA-NA	2.9	2
31	A new theoretical formula for the determination of the copolymer composition distribution measured by gel permeation chromatography. <i>Macromolecular Rapid Communications</i> , 1997 , 18, 601-60	/ 4.8	2
30	Non-equilibrium model for catalytic distillation process. <i>Frontiers of Chemical Engineering in China</i> , 2008 , 2, 379-384		2
29	Highly dispersed rhodium atoms supported on defect-rich Co(OH)2 for the chemoselective hydrogenation of nitroarenes. <i>New Journal of Chemistry</i> ,	3.6	2
28	3D carbon-coated stannous sulfide-molybdenum disulfide anodes for advanced lithium-ion batteries. <i>Materials Advances</i> , 2020 , 1, 2323-2331	3.3	2
27	Heat-Resistant and High-Performance Solid-State Supercapacitors Based on Poly(-phenylene terephthalamide) Fibers via Polymer-Assisted Metal Deposition. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 18100-18109	9.5	2
26	Synthesis from Molecule into 3D Polyamide 6 Microspheres Stacked Polyhedrons via Self-Assembly. <i>Macromolecular Materials and Engineering</i> , 2018 , 303, 1700546	3.9	2
25	Surface modification of cuprous oxide nanoparticles with improved chemical stability and antibacterial activity. <i>Applied Surface Science</i> , 2021 , 565, 150566	6.7	2
24	Feasibility of Predicting Static Dielectric Constants of Polymer Materials: A Density Functional Theory Method. <i>Polymers</i> , 2021 , 13,	4.5	2
23	Kinetic study of the multistep thermo-oxidative degradation of thermosetting siloxane-containing polyimide and unmodified polyimide. <i>Journal of Applied Polymer Science</i> , 2020 , 137, 49021	2.9	1
22	Cu2OŒR (Ion-exchange Resin) Composites: A Novel Strategy for Cu2O Synthesis. <i>Chemistry Letters</i> , 2016 , 45, 238-240	1.7	1
21	Solvent free nanoscale ionic materials based on FeO nanoparticles modified with mussel inspired ligands. <i>Journal of Colloid and Interface Science</i> , 2018 , 531, 404-409	9.3	1
20	A developed full-field fem analysis combined with ESPI for the investigation of defect evolution in polymer films. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2013 , 31, 1022-1028	3.5	1

19	High-Efficient Beam Combining of Polarized High Power Lasers by Time Multiplexing Technique. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 261-263	2.2	1
18	Preparation and electrochemical property of tremella-like polyaniline microspheres by a template-free method. <i>Materials Letters</i> , 2013 , 92, 115-118	3.3	1
17	Characterization of refractive index distribution of polymer optical fiber. <i>Science Bulletin</i> , 2002 , 47, 982	-985	1
16	AIE-active macromolecules: designs, performances, and applications. <i>Polymer Chemistry</i> , 2021 , 13, 8-43	4.9	1
15	Digital Light Processing 3D Printing of Enhanced Polymers via Interlayer Welding <i>Macromolecular Rapid Communications</i> , 2022 , e2200053	4.8	1
14	Influence of NaBH4 Liquid Reduction Over LaCuZn Perovskite for CO2 Hydrogenation to Methanol. <i>Catalysis Letters</i> , 2020 , 150, 922-929	2.8	1
13	Phase transformation of PiMoCo and their electrocatalytic activity for oxygen evolution reaction. <i>CrystEngComm</i> , 2020 , 22, 6003-6009	3.3	1
12	Biomimetic Porous Nanofiber-Based Oil Pump for Spontaneous Oil Directional Transport and Collection. <i>ACS Applied Materials & Englished Property</i> 13, 16887-16894	9.5	1
11	AIE-active polyelectrolyte based photosensitizers: the effects of structure on antibiotic-resistant bacterial sensing and killing and pollutant decomposition. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 530	9 ⁻³ 317	7 ¹
10	Sodium-Ion Batteries: SnS2 Nanosheets Coating on Nanohollow Cubic CoS2/C for Ultralong Life and High Rate Capability Half/Full Sodium-Ion Batteries (Small 41/2018). <i>Small</i> , 2018 , 14, 1870187	11	1
9	Role of Interfaces in the Thermal Reduction Process of the FeO/Cu2O/Cu(100) Surface. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 20863-20869	3.8	1
8	Efficient Antibacterial Agent Delivery by Mesoporous Silica Aerogel ACS Omega, 2022, 7, 7638-7647	3.9	1
7	Self-assembly of homopolymer of PAA-NH4. Chinese Chemical Letters, 2019, 30, 477-480	8.1	О
6	Au/Ni/Ni(OH)2/C Nanocatalyst with High Catalytic Activity and Selectivity for m-dinitrobenzene Hydrogenation. <i>Catalysis Letters</i> ,1	2.8	O
5	Biophotonic Films: Biomimetic Polymer Film with Brilliant Brightness Using a One-Step Water VaporInduced Phase Separation Method (Adv. Funct. Mater. 23/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970158	15.6	
4	The Propulsion of a Miniature Device by Organic Fluid Jetflow through Polymer Submicron Tubes. <i>Chinese Physics Letters</i> , 2013 , 30, 126801	1.8	
3	Pseudo-Homogenous Kinetics Model for the Synthesis of Dimethyl Carbonate from Urea and Methanol with Heterogeneous Catalyst. <i>Advanced Materials Research</i> , 2011 , 233-235, 481-486	0.5	
2	Study on the determination of the molecular weight of polyethylene with ultrahigh temperature GPC. <i>Macromolecular Rapid Communications</i> , 1998 , 19, 115-118	4.8	

Toughening of Polycarbonate with Organic-Inorganic Hybrid Materials. *Polymers and Polymer Composites*, **2006**, 14, 291-300

0.8