Shi-Yong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4104675/publications.pdf

Version: 2024-02-01

361413 302126 1,549 47 20 39 citations h-index g-index papers 49 49 49 1715 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	EDOT-based conjugated polymers accessed <i>via</i> Câ€"H direct arylation for efficient photocatalytic hydrogen production. Chemical Science, 2022, 13, 1725-1733.	7.4	58
2	Emerging frontiers of Z-scheme photocatalytic systems. Trends in Chemistry, 2022, 4, 111-127.	8.5	100
3	Pot- and atom-economic synthesis of oligomeric non-fullerene acceptors <i>via</i> C–H direct arylation. Polymer Chemistry, 2022, 13, 2351-2361.	3.9	18
4	Hole Transfer Prompted by Viscous Oligomer Solid Additives in Non-Fullerene Bulk-Heterojunction Layers. ACS Applied Polymer Materials, 2022, 4, 1940-1947.	4.4	6
5	Câ~H Direct Arylation: A Robust Tool to Tailor the Ï€â€Conjugation Lengths of Nonâ€Fullerene Acceptors. ChemSusChem, 2022, 15, .	6.8	14
6	Diketopyrrolopyrrole and perylene diimine-based large π-molecules constructed via C–H direct arylation. Dyes and Pigments, 2022, 204, 110468.	3.7	5
7	2D Conductive Metal–Organic Frameworks: An Emerging Platform for Electrochemical Energy Storage. Angewandte Chemie, 2021, 133, 5672-5684.	2.0	45
8	<scp>Oneâ€Pot</scp> Synthesis of 3―to <scp>15â€Mer Ï€â€Conjugated</scp> Discrete Oligomers with Widely Tunable Optical Properties. Chinese Journal of Chemistry, 2021, 39, 577-584.	у _{4.9}	12
9	Exfoliated conjugated porous polymer nanosheets for highly efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 5787-5795.	10.3	81
10	<i>In situ</i> Câ€"H activation-derived polymer@TiO ₂ pâ€"n heterojunction for photocatalytic hydrogen evolution. Sustainable Energy and Fuels, 2021, 5, 5166-5174.	4.9	11
11	Donorâ€Acceptor Type Covalent Organic Frameworks. Chemistry - A European Journal, 2021, 27, 10781-10797.	3.3	90
12	Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production. Beilstein Journal of Nanotechnology, 2021, 12, 607-623.	2.8	9
13	Frontispiece: Donorâ€Acceptor Type Covalent Organic Frameworks. Chemistry - A European Journal, 2021, 27, .	3.3	O
14	Modulating Chlorination Position on Polymer Donors for Highly Efficient Nonfullerene Organic Solar Cells. Solar Rrl, 2021, 5, 2100510.	5.8	8
15	2D Conductive Metal–Organic Frameworks: An Emerging Platform for Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2021, 60, 5612-5624.	13.8	198
16	One-pot synthesis of long-chain monodisperse π-conjugated oligomers terminated by C–H or C–Br bonds. Dyes and Pigments, 2020, 172, 107819.	3.7	7
17	One-pot synthesis of cyclopentadithiophene-isoindigo based low bandgap long-chain π-conjugated oligomers. Materials Today Communications, 2020, 22, 100850.	1.9	3
18	Achieving an unprecedented hydrogen evolution rate by solvent-exfoliated CPP-based photocatalysts. Journal of Materials Chemistry A, 2020, 8, 5890-5899.	10.3	72

#	Article	IF	Citations
19	Single-step access to a series of D–A π-conjugated oligomers with 3–10 nm chain lengths. Polymer Chemistry, 2019, 10, 325-330.	3.9	15
20	Atom- and step-economic synthesis of π-conjugated large oligomers via C H activated oligomerization. Dyes and Pigments, 2019, 162, 640-646.	3.7	18
21	C–H activation derived CPPs for photocatalytic hydrogen production excellently accelerated by a DMF cosolvent. Journal of Materials Chemistry A, 2019, 7, 24222-24230.	10.3	73
22	Novel Diketopyrrolopyrrole-Based π-Conjugated Molecules Synthesized Via One-Pot Direct Arylation Reaction. Molecules, 2019, 24, 1760.	3.8	11
23	One-step rapid synthesis of Ï€-conjugated large oligomers <i>via</i> Câ€"H activation coupling. Organic Chemistry Frontiers, 2018, 5, 653-661.	4.5	39
24	A-D-A small molecule donors based on pyrene and diketopyrrolopyrrole for organic solar cells. Science China Chemistry, 2017, 60, 561-569.	8.2	15
25	Electron acceptors with varied linkages between perylene diimide and benzotrithiophene for efficient fullerene-free solar cells. Journal of Materials Chemistry A, 2017, 5, 9396-9401.	10.3	60
26	Diketopyrrolopyrrole-based oligomers accessed via sequential C H activated coupling for fullerene-free organic photovoltaics. Dyes and Pigments, 2016, 134, 139-147.	3.7	49
27	Photovoltaics: A Tetraperylene Diimides Based 3D Nonfullerene Acceptor for Efficient Organic Photovoltaics (Adv. Sci. 4/2015). Advanced Science, 2015, 2, .	11.2	1
28	A Tetraperylene Diimides Based 3D Nonfullerene Acceptor for Efficient Organic Photovoltaics. Advanced Science, 2015, 2, 1500014.	11.2	79
29	Three-dimensional molecular donors combined with polymeric acceptors for high performance fullerene-free organic photovoltaic devices. Journal of Materials Chemistry A, 2015, 3, 22162-22169.	10.3	33
30	A direct arylation-derived DPP-based small molecule for solution-processed organic solar cells. Nanotechnology, 2014, 25, 014006.	2.6	30
31	Pyrene and Diketopyrrolopyrrole-Based Oligomers Synthesized via Direct Arylation for OSC Applications. ACS Applied Materials & Samp; Interfaces, 2014, 6, 6765-6775.	8.0	68
32	Roll-coating fabrication of flexible large area small molecule solar cells with power conversion efficiency exceeding 1%. Journal of Materials Chemistry A, 2014, 2, 19809-19814.	10.3	44
33	C–H activation: making diketopyrrolopyrrole derivatives easily accessible. Journal of Materials Chemistry A, 2013, 1, 2795.	10.3	118
34	Hydrogen-Bond Influenced Synthesis and Crystal Structures of (4-Chloro-2-[(2-dimethylaminoethylimino)methyl] phenolato)dioxovanadium(V) and Bis(2-[(2-aminoethylimino)methyl]-4-bromophenolato) dioxovanadium(V). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 734-738.	0.6	1
35	Crystal structure of N´-(5-bromo-2-hydroxy-3-methoxybenzylidene)-4- hydroxy-3-methoxybenzohydrazide dihydrate, C16H15BrN2O5·2H2O, C16H19BrN2O7. Zeitschrift Fur Kristallographie - New Crystal Structures, 2012, 227, 467-468.	0.3	1
36	Crystal structure of N´-(3-hydroxybenzylidene)-4-dimethylamino benzohydrazide, C16H17N3O2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2012, 227, 465-466.	0.3	0

#	Article	IF	CITATIONS
37	Crystal structure of N´-(5-bromo-2-hydroxy-3-methoxybenzylidene)-2- methoxybenzohydrazide monohydrate, C16H15BrN2O4·H2O, C16H17BrN2O5. Zeitschrift Fur Kristallographie - New Crystal Structures, 2012, 227, 469-470.	0.3	0
38	Synthesis and Crystal Structures of Dioxovanadium Complexes With Schiff Bases. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 603-607.	0.6	3
39	Pd/C as a Clean and Effective Heterogeneous Catalyst for C–C Couplings toward Highly Pure Semiconducting Polymers. Macromolecules, 2012, 45, 9004-9009.	4.8	73
40	Crystal structure of [N´-(2-hydroxynaphthyl)ethylidene]-4-dimethyl aminobenzohydrazide, C21H21N3O2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2012, 227, 491-492.	0.3	0
41	Crystal structure of N´-(2-methoxynaphthylidene)-4-dimethylamino benzohydrazide, C21H21N3O2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2012, 227, 463-464.	0.3	0
42	Synthesis, Characterization, and Crystal Structures of Two Dioxovanadium(V) Complexes with Schiff Bases. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 22-25.	0.6	6
43	Hydrogen Bond-Induced Assembly and Crystal Structures of Two Oxovanadium Complexes with Schiff Bases. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 1148-1152.	0.6	0
44	Water Soluble Starch Stabilized Palladium Nanoparticle: Efficient Catalyst for Miyauraâ€Suzuki Coupling Reaction. Chinese Journal of Chemistry, 2010, 28, 589-593.	4.9	18
45	Dodecylsulfate Anion Embedded Layered Double Hydroxide Supported Nanopalladium Catalyst for the Suzuki Reaction. Chinese Journal of Catalysis, 2010, 31, 557-561.	14.0	27
46	Heck reaction catalyzed by colloids of delaminated Pd-containing layered double hydroxide. Journal of Molecular Catalysis A, 2008, 290, 72-78.	4.8	20
47	In situ chemical formation of iron phthalocyanine (FePc) monolayer on the surface of magnetite nanoparticles. New Journal of Chemistry, 2007, 31, 916.	2.8	8