Shayn M Peirce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/410419/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lschemiaâ€reperfusion injury in chronic pressure ulcer formation: A skin model in the rat. Wound Repair and Regeneration, 2000, 8, 68-76.	3.0	244
2	Macrophages: An Inflammatory Link Between Angiogenesis and Lymphangiogenesis. Microcirculation, 2016, 23, 95-121.	1.8	240
3	Multiscale Computational Models of Complex Biological Systems. Annual Review of Biomedical Engineering, 2013, 15, 137-154.	12.3	186
4	Human Adipose-Derived Stromal Cells Accelerate Diabetic Wound Healing: Impact of Cell Formulation and Delivery. Tissue Engineering - Part A, 2010, 16, 1595-1606.	3.1	176
5	Non-classical monocytes are biased progenitors of wound healing macrophages during soft tissue injury. Scientific Reports, 2017, 7, 447.	3.3	176
6	Multicellular simulation predicts microvascular patterning and in silico tissue assembly. FASEB Journal, 2004, 18, 731-733.	0.5	149
7	Computational and Mathematical Modeling of Angiogenesis. Microcirculation, 2008, 15, 739-751.	1.8	147
8	Combining experiments with multi-cell agent-based modeling to study biological tissue patterning. Briefings in Bioinformatics, 2007, 8, 245-257.	6.5	135
9	Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13785-13790.	7.1	133
10	Pericytes Derived from Adipose-Derived Stem Cells Protect against Retinal Vasculopathy. PLoS ONE, 2013, 8, e65691.	2.5	132
11	Differential Arterial/Venous Expression of NG2 Proteoglycan in Perivascular Cells Along Microvessels: Identifying a Venuleâ€6pecific Phenotype. Microcirculation, 2005, 12, 151-160.	1.8	119
12	IFATS Collection: The Role of Human Adipose-Derived Stromal Cells in Inflammatory Microvascular Remodeling and Evidence of a Perivascular Phenotype. Stem Cells, 2008, 26, 2682-2690.	3.2	114
13	Multi-cell Agent-based Simulation of the Microvasculature to Study the Dynamics of Circulating Inflammatory Cell Trafficking. Annals of Biomedical Engineering, 2007, 35, 916-936.	2.5	108
14	Oxygen Sensing Difluoroboron β-Diketonate Polylactide Materials with Tunable Dynamic Ranges for Wound Imaging. ACS Sensors, 2016, 1, 1366-1373.	7.8	104
15	Characterizing emergent properties of immunological systems with multi-cellular rule-based computational modeling. Trends in Immunology, 2008, 29, 589-599.	6.8	94
16	Vascular Assembly in Natural and Engineered Tissues. Annals of the New York Academy of Sciences, 2002, 961, 223-242.	3.8	93
17	Targeting Pericytes for Angiogenic Therapies. Microcirculation, 2014, 21, 345-357.	1.8	81
18	Modified VEGF-A mRNA induces sustained multifaceted microvascular response and accelerates diabetic wound healing. Scientific Reports, 2018, 8, 17509.	3.3	80

#	Article	IF	CITATIONS
19	Agent-Based Model of Therapeutic Adipose-Derived Stromal Cell Trafficking during Ischemia Predicts Ability To Roll on P-Selectin. PLoS Computational Biology, 2009, 5, e1000294.	3.2	72
20	Microvascular Remodeling: A Complex Continuum Spanning Angiogenesis to Arteriogenesis. Microcirculation, 2003, 10, 99-111.	1.8	71
21	Perivascular Cells Along Venules Upregulate NG2 Expression During Microvascular Remodeling. Microcirculation, 2006, 13, 261-273.	1.8	70
22	Collateral Capillary Arterialization following Arteriolar Ligation in Murine Skeletal Muscle. Microcirculation, 2010, 17, 333-47.	1.8	67
23	"Small Blood Vessels: Big Health Problems?†Scientific Recommendations of the National Institutes of Health Workshop. Journal of the American Heart Association, 2016, 5, .	3.7	67
24	Selective A _{2A} adenosine receptor activation reduces skin pressure ulcer formation and inflammation. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H67-H74.	3.2	65
25	Interstitial flow differentially increases patient-derived glioblastoma stem cell invasion <i>via</i> CXCR4, CXCL12, and CD44-mediated mechanisms. Integrative Biology (United) Tj ETQq1 1 0.3	78 43 314 rg	BTdøverlock
26	Multiscale models of skeletal muscle reveal the complex effects of muscular dystrophy on tissue mechanics and damage susceptibility. Interface Focus, 2015, 5, 20140080.	3.0	64
27	Spatial and temporal control of angiogenesis and arterialization using focal applications of VEGF ₁₆₄ and Ang-1*. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H918-H925.	3.2	63
28	Multicellular computer simulation of morphogenesis: blastocoel roof thinning and matrix assembly in Xenopus laevis. Developmental Biology, 2004, 271, 210-222.	2.0	59
29	Microvascular Remodeling: A Complex Continuum Spanning Angiogenesis to Arteriogenesis. Microcirculation, 2003, 10, 99-111.	1.8	58
30	Flt-1 (VEGFR-1) coordinates discrete stages of blood vessel formation. Cardiovascular Research, 2016, 111, 84-93.	3.8	56
31	Extracellular Superoxide Dismutase Ameliorates Skeletal Muscle Abnormalities, Cachexia, and Exercise Intolerance in Mice with Congestive Heart Failure. Circulation: Heart Failure, 2014, 7, 519-530.	3.9	54
32	Pannexin 1 is required for full activation of insulin-stimulated glucose uptake in adipocytes. Molecular Metabolism, 2015, 4, 610-618.	6.5	54
33	FTY720 Promotes Local Microvascular Network Formation and Regeneration of Cranial Bone Defects. Tissue Engineering - Part A, 2010, 16, 1801-1809.	3.1	53
34	Methods to label, image, and analyze the complex structural architectures of microvascular networks. Microcirculation, 2019, 26, e12520.	1.8	51
35	Rapid Analysis of Vessel Elements (RAVE): A Tool for Studying Physiologic, Pathologic and Tumor Angiogenesis. PLoS ONE, 2011, 6, e20807.	2.5	49
36	Adipose-Derived Stem Cells From Diabetic Mice Show Impaired Vascular Stabilization in a Murine Model of Diabetic Retinopathy. Stem Cells Translational Medicine, 2015, 4, 459-467.	3.3	47

#	Article	IF	CITATIONS
37	Agentâ€based modeling of multicell morphogenic processes during development. Birth Defects Research Part C: Embryo Today Reviews, 2007, 81, 344-353.	3.6	46
38	Computational Modeling of Interacting VEGF and Soluble VEGF Receptor Concentration Gradients. Frontiers in Physiology, 2011, 2, 62.	2.8	46
39	Human adipose-derived stromal/stem cells demonstrate short-lived persistence after implantation in both an immunocompetent and an immunocompromised murine model. Stem Cell Research and Therapy, 2014, 5, 142.	5.5	46
40	Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks. Integrative Biology (United Kingdom), 2015, 7, 987-997.	1.3	44
41	Fibroblasts: Diverse Cells Critical to Biomaterials Integration. ACS Biomaterials Science and Engineering, 2018, 4, 1223-1232.	5.2	41
42	Chronic whole-body hypoxia induces intussusceptive angiogenesis and microvascular remodeling in the mouse retina. Microvascular Research, 2010, 79, 93-101.	2.5	38
43	Selective Activation of Sphingosine 1-Phosphate Receptors 1 and 3 Promotes Local Microvascular Network Growth. Tissue Engineering - Part A, 2011, 17, 617-629.	3.1	37
44	Construct validity of a simulator for myringotomy with ventilation tube insertion. Otolaryngology - Head and Neck Surgery, 2009, 141, 603-608.	1.9	36
45	Toward a Multi-Scale Computational Model of Arterial Adaptation in Hypertension: Verification of a Multi-Cell Agent Based Model. Frontiers in Physiology, 2011, 2, 20.	2.8	36
46	Ensuring Congruency in Multiscale Modeling: Towards Linking Agent Based and Continuum Biomechanical Models of Arterial Adaptation. Annals of Biomedical Engineering, 2011, 39, 2669-2682.	2.5	36
47	Development and Validation of a Novel Ear Simulator to Teach Pneumatic Otoscopy. Simulation in Healthcare, 2012, 7, 22-26.	1.2	35
48	Agentâ€based computational model of retinal angiogenesis simulates microvascular network morphology as a function of pericyte coverage. Microcirculation, 2017, 24, e12393.	1.8	34
49	Identification of <scp>ILK</scp> as a critical regulator of <scp>VEGFR</scp> 3 signalling and lymphatic vascular growth. EMBO Journal, 2019, 38, .	7.8	34
50	Arteriolar Remodeling Following Ischemic Injury Extends from Capillary to Large Arteriole in the Microcirculation. Microcirculation, 2008, 15, 389-404.	1.8	33
51	Engineering in vivo gradients of sphingosine-1-phosphate receptor ligands for localized microvascular remodeling and inflammatory cell positioning. Acta Biomaterialia, 2014, 10, 4704-4714.	8.3	32
52	Agent-based model illustrates the role of the microenvironment in regeneration in healthy and <i>mdx</i> skeletal muscle. Journal of Applied Physiology, 2018, 125, 1424-1439.	2.5	31
53	Integration of experimental and computational approaches to sprouting angiogenesis. Current Opinion in Hematology, 2012, 19, 184-191.	2.5	30
54	Multiscale Coupling of an Agent-Based Model of Tissue Fibrosis and a Logic-Based Model of Intracellular Signaling. Frontiers in Physiology, 2019, 10, 1481.	2.8	29

#	Article	IF	CITATIONS
55	REAVER: A program for improved analysis of highâ€resolution vascular network images. Microcirculation, 2020, 27, e12618.	1.8	29
56	EphB4 Expression Along Adult Rat Microvascular Networks: EphB4 Is More Than a Venous Specific Marker. Microcirculation, 2007, 14, 253-267.	1.8	28
57	Agent-based computational model investigates muscle-specific responses to disuse-induced atrophy. Journal of Applied Physiology, 2015, 118, 1299-1309.	2.5	28
58	Multiscale computational analysis of Xenopus laevis morphogenesis reveals key insights of systems-level behavior. BMC Systems Biology, 2007, 1, 46.	3.0	27
59	Monocytes Are Recruited From Venules During Arteriogenesis in the Murine Spinotrapezius Ligation Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2012-2022.	2.4	27
60	In Silico and In Vivo Experiments Reveal M-CSF Injections Accelerate Regeneration Following Muscle Laceration. Annals of Biomedical Engineering, 2017, 45, 747-760.	2.5	27
61	Perivascular cell-specific knockout of the stem cell pluripotency gene Oct4 inhibits angiogenesis. Nature Communications, 2019, 10, 967.	12.8	27
62	Modulating Vascular Hemodynamics With an Alpha Globin Mimetic Peptide (HbαX). Hypertension, 2016, 68, 1494-1503.	2.7	26
63	Pericyte Bridges in Homeostasis and Hyperglycemia. Diabetes, 2020, 69, 1503-1517.	0.6	25
64	Computational Modeling of Muscle Regeneration and Adaptation to Advance Muscle Tissue Regeneration Strategies. Cells Tissues Organs, 2016, 202, 250-266.	2.3	24
65	Dynamic, heterogeneous endothelial Tie2 expression and capillary blood flow during microvascular remodeling. Scientific Reports, 2017, 7, 9049.	3.3	24
66	Hypoxic culture and in vivo inflammatory environments affect the assumption of pericyte characteristics by human adipose and bone marrow progenitor cells. American Journal of Physiology - Cell Physiology, 2011, 301, C1378-C1388.	4.6	23
67	An engineering design approach to systems biology. Integrative Biology (United Kingdom), 2017, 9, 574-583.	1.3	22
68	Differential Effects of Processing Time and Duration of Collagenase Digestion on Human and Murine Fat Grafts. Plastic and Reconstructive Surgery, 2015, 136, 189e-199e.	1.4	21
69	Spatial scaling in multiscale models: methods for coupling agent-based and finite-element models of wound healing. Biomechanics and Modeling in Mechanobiology, 2019, 18, 1297-1309.	2.8	21
70	Macrophage Recruitment and Polarization During Collateral Vessel Remodeling in Murine Adipose Tissue. Microcirculation, 2016, 23, 75-87.	1.8	20
71	Paradoxical Adipose Hyperplasia and Cellular Effects After Cryolipolysis: A Case Report. Aesthetic Surgery Journal, 2016, 36, NP6-NP13.	1.6	20
72	Muscle-derived extracellular superoxide dismutase inhibits endothelial activation and protects against multiple organ dysfunction syndrome in mice. Free Radical Biology and Medicine, 2017, 113, 212-223.	2.9	20

#	Article	IF	CITATIONS
73	Functional Binding of Human Adipose-Derived Stromal Cells. Annals of Plastic Surgery, 2008, 60, 437-444.	0.9	18
74	Multiscale biosystems integration: Coupling intracellular network analysis with tissue-patterning simulations. IBM Journal of Research and Development, 2006, 50, 601-615.	3.1	17
75	Inhibition of Canonical Wnt Signaling Increases Microvascular Hemorrhaging and Venular Remodeling in Adult Rats. Microcirculation, 2010, 17, no-no.	1.8	17
76	Advanced Imaging Techniques for Investigation of Acellular Dermal Matrix Biointegration. Plastic and Reconstructive Surgery, 2017, 139, 395-405.	1.4	17
77	<i>Klf4</i> has an unexpected protective role in perivascular cells within the microvasculature. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H402-H414.	3.2	17
78	Computational Network Model Prediction of Hemodynamic Alterations Due to Arteriolar Rarefaction and Estimation of Skeletal Muscle Perfusion in Peripheral Arterial Disease. Microcirculation, 2015, 22, 360-369.	1.8	15
79	Multi-scale models of lung fibrosis. Matrix Biology, 2020, 91-92, 35-50.	3.6	15
80	Multiscale computational models of cancer. Current Opinion in Biomedical Engineering, 2019, 11, 137-144.	3.4	14
81	Effects of Collagenase Digestion and Stromal Vascular Fraction Supplementation on Volume Retention of Fat Grafts. Annals of Plastic Surgery, 2017, 78, S335-S342.	0.9	13
82	Applications of computational models to better understand microvascular remodelling: a focus on biomechanical integration across scales. Interface Focus, 2015, 5, 20140077.	3.0	12
83	Deformability-based microfluidic separation of pancreatic islets from exocrine acinar tissue for transplant applications. Lab on A Chip, 2017, 17, 3682-3691.	6.0	12
84	Spatial and age-related changes in the microstructure of dystrophic and healthy diaphragms. PLoS ONE, 2017, 12, e0183853.	2.5	12
85	In vivo imaging of hemodynamic redistribution and arteriogenesis across microvascular network. Microcirculation, 2020, 27, e12598.	1.8	12
86	Extracellular matrix remodeling associated with bleomycin-induced lung injury supports pericyte-to-myofibroblast transition. Matrix Biology Plus, 2021, 10, 100056.	3.5	12
87	Vivarium: an interface and engine for integrative multiscale modeling in computational biology. Bioinformatics, 2022, 38, 1972-1979.	4.1	12
88	Topical Poloxamer-188 Improves Blood Flow Following Thermal Injury in Rat Mesenteric Microvasculature. Annals of Plastic Surgery, 2008, 60, 584-588.	0.9	11
89	Rat Mesentery Exteriorization: A Model for Investigating the Cellular Dynamics Involved in Angiogenesis. Journal of Visualized Experiments, 2012, , e3954.	0.3	11
90	Myeloid P2Y2 receptor promotes acute inflammation but is dispensable for chronic high-fat diet-induced metabolic dysfunction. Purinergic Signalling, 2018, 14, 19-26.	2.2	11

#	Article	IF	CITATIONS
91	Letter to the Editor. Microcirculation, 2005, 12, 539-541.	1.8	10
92	Systems Analysis of Small Signaling Modules Relevant to Eight Human Diseases. Annals of Biomedical Engineering, 2011, 39, 621-635.	2.5	10
93	Mechanotransduction in Blood and Lymphatic Vascular Development and Disease. Advances in Pharmacology, 2018, 81, 155-208.	2.0	10
94	Effect of Adiposeâ€Derived Stem Cells on Head and Neck Squamous Cell Carcinoma. Otolaryngology - Head and Neck Surgery, 2018, 158, 882-888.	1.9	10
95	Metallothionein I as a direct link between therapeutic hematopoietic stem/progenitor cells and cerebral protection in stroke. FASEB Journal, 2018, 32, 2381-2394.	0.5	9
96	Myh11+ microvascular mural cells and derived mesenchymal stem cells promote retinal fibrosis. Scientific Reports, 2020, 10, 15808.	3.3	9
97	Agent-based model provides insight into the mechanisms behind failed regeneration following volumetric muscle loss injury. PLoS Computational Biology, 2021, 17, e1008937.	3.2	9
98	Interval vs Massed Training: How Best Do We Teach Surgery?. Otolaryngology - Head and Neck Surgery, 2014, 150, 61-67.	1.9	8
99	Myh11 Lineage Corneal Endothelial Cells and ASCs Populate Corneal Endothelium. , 2019, 60, 5095.		8
100	A New Method for <i>In Vivo</i> Visualization of Vessel Remodeling Using a Nearâ€Infrared Dye. Microcirculation, 2011, 18, 163-171.	1.8	7
101	Attenuation of EphrinB2 Reverse Signaling Decreases Vascularized Area and Preretinal Vascular Tuft Formation in the Murine Model of Oxygen-Induced Retinopathy. , 2012, 53, 5462.		7
102	Multiscale Computational Modeling in Vascular Biology: From Molecular Mechanisms to Tissue-Level Structure and Function. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2013, , 209-240.	1.0	7
103	Induction of microvascular network growth in the mouse mesentery. Microcirculation, 2018, 25, e12502.	1.8	7
104	Data-Driven Model Validation Across Dimensions. Bulletin of Mathematical Biology, 2019, 81, 1853-1866.	1.9	7
105	Multiscale models of infection. Current Opinion in Biomedical Engineering, 2019, 11, 102-108.	3.4	6
106	Vascular Expression of Hemoglobin Alpha in Antarctic Icefish Supports Iron Limitation as Novel Evolutionary Driver. Frontiers in Physiology, 2019, 10, 1389.	2.8	6
107	Oxygen-Sensing Biomaterial Construct for Clinical Monitoring of Wound Healing. Advances in Skin and Wound Care, 2020, 33, 428-436.	1.0	6
108	Computational Models Provide Insight into In Vivo Studies and Reveal the Complex Role of Fibrosis in mdx Muscle Regeneration. Annals of Biomedical Engineering, 2021, 49, 536-547.	2.5	6

#	Article	IF	CITATIONS
109	Exogenous Thrombin Delivery Promotes Collateral Capillary Arterialization and Tissue Reperfusion in the Murine Spinotrapezius Muscle Ischemia Model. Microcirculation, 2012, 19, 143-154.	1.8	5
110	Arteriogenesis in murine adipose tissue is contingent on CD68 ⁺ /CD206 ⁺ macrophages. Microcirculation, 2017, 24, e12341.	1.8	5
111	Mathematical Model Predicts that Acceleration of Diabetic Wound Healing is Dependent on Spatial Distribution of VEGF-A mRNA (AZD8601). Cellular and Molecular Bioengineering, 2021, 14, 321-338.	2.1	5
112	Design and implementation of a student-taught course on research in regenerative medicine. American Journal of Physiology - Advances in Physiology Education, 2018, 42, 360-367.	1.6	4
113	CIRCOAST: a statistical hypothesis test for cellular colocalization with network structures. Bioinformatics, 2019, 35, 506-514.	4.1	4
114	Modelâ€Based Analysis Reveals a Sustained and Doseâ€Dependent Acceleration of Wound Healing by VEGFâ€A mRNA (AZD8601). CPT: Pharmacometrics and Systems Pharmacology, 2020, 9, 384-394.	2.5	4
115	Photoacoustic microscopy of vascular adaptation and tissue oxygen metabolism during cutaneous wound healing. Biomedical Optics Express, 2022, 13, 2695.	2.9	4
116	Microfluidics Technologies and Approaches for Studying the Microcirculation. Microcirculation, 2017, 24, e12377.	1.8	3
117	Murine Spinotrapezius Model to Assess the Impact of Arteriolar Ligation on Microvascular Function and Remodeling. Journal of Visualized Experiments, 2013, , e50218.	0.3	2
118	Using Bioprinting to Tissue Engineer Microvascularized Constructs for Skeletal Muscle Repair. FASEB Journal, 2019, 33, lb449.	0.5	2
119	Biophysical quantification of reorganization dynamics of human pancreatic islets during co-culture with adipose-derived stem cells. Analyst, The, 2022, 147, 2731-2738.	3.5	2
120	In silico optimization of heparin microislands in microporous annealed particle hydrogel for endothelial cell migration. Acta Biomaterialia, 2022, 148, 171-180.	8.3	2
121	Mathematical and Computational Models in Cancer. , 2011, , 113-126.		1
122	Agent-based Models, Discrete Models and Mathematics. , 2013, , 14-17.		1
123	Computational automata simulation of blastocoel roof thinning in the Xenopu laevis embryo. , 2003, , .		0
124	High-level Modeling of Biological Networks. , 2010, , 225-247.		0
125	Preclinical Assessment of Safety and Efficacy of Fluorescent Dye for Detecting Dermal Injuries (the) Tj ETQq1 1 0 1493-1497.	.784314 rg 1.6	gBT /Overloo 0
126	Biomimetic Models of the Microcirculation for Scientific Discovery and Therapeutic Testing. , 2021, , 1-23.		0

#	Article	IF	CITATIONS
127	Clinical perspectives on the microcirculation. Microcirculation, 2021, 28, e12688.	1.8	Ο
128	Biomimetic Models of the Microcirculation for Scientific Discovery and Therapeutic Testing. Reference Series in Biomedical Engineering, 2021, , 321-342.	0.1	0
129	NG2 proteoglycan expression is functionally involved in microvascular remodeling. FASEB Journal, 2006, 20, A712.	0.5	0
130	Characterization of EphB4 expression in adult mesenteric microvascular networks. FASEB Journal, 2006, 20, A712.	0.5	0
131	Microvascular response to ischemia in mouse spinotrapezius muscle: lessons for human vascular variability. FASEB Journal, 2009, 23, 304.3.	0.5	0
132	Combining experiments with agentâ€based modeling to study microvascular growth at the multiâ€cell level. FASEB Journal, 2009, 23, 304.1.	0.5	0
133	Microvascular NG2 expression patterns in response to aging, ischemic injury, and disease in mouse spinotrapezius muscle. FASEB Journal, 2009, 23, 592.20.	0.5	0
134	Mouse models of variability in vascular remodeling: collateral networks in spinotrapezius muscle ischemia. FASEB Journal, 2010, 24, 774.25.	0.5	0
135	Interâ€individual Differences in Arteriolar Tree Architecture in the Mouse Spinotrapezius May Suggest a Genetic Basis for Susceptibility to Ischemic Insult. FASEB Journal, 2010, 24, 973.15.	0.5	0
136	Effects of Exogenous Thrombin on Cell Recruitment and Collateral Arteriole Development in the Mouse Spinotrapezius. FASEB Journal, 2011, 25, lb440.	0.5	0
137	Variations in Tip Cell Proximity and sFlt1 Gradients Alter VEGF Receptor Activation in a Computational Model. FASEB Journal, 2011, 25, 1091.11.	0.5	0
138	Collateral Expansion and Capillary Arterialization in the Spinotrapezius of C57BL/6, BALB/c and NG2 Knockout Mice. FASEB Journal, 2011, 25, 1092.13.	0.5	0
139	Monocyte Recruitment during Microvascular Arteriogenesis is Induced by Altered Flow and Influenced by Proximity of Venules to Collateral Arterioles. FASEB Journal, 2013, 27, 685.8.	0.5	0
140	Tissue Oxygenation within Diabetic Wounds can be Monitored Using Difluoroboron β– Diketonate Polylactide Nanoparticles. FASEB Journal, 2018, 32, 577.2.	0.5	0
141	Agentâ€Based Model of Pericyte Response to Plateletâ€Derived Growth Factorâ€BB from Sprouting Endothelial Cells in the Developing Mouse Retina. FASEB Journal, 2018, 32, 708.2.	0.5	0
142	Agent Based Model of Endothelial Cell and Pericyte Interactions During Angiogenesis in the Germinal Matrix. FASEB Journal, 2018, 32, 573.1.	0.5	0
143	REAVER: An Improved Image Analysis Pipeline for Quantifying Microvascular Networks. FASEB Journal, 2019, 33, .	0.5	0
144	Improved Difluoroboron βâ€Diketonate Poly(lactic acid) Nanoparticles for Monitoring Wound Oxygenation. FASEB Journal, 2020, 34, 1-1.	0.5	0

#	Article	IF	CITATIONS
145	Linking arterial stiffness to microvascular remodeling. , 2022, , 195-209.		0
146	Multiâ€scale Computational Model of Endothelial Cellâ€Pericyte Coupling in Idiopathic Pulmonary Fibrosis. FASEB Journal, 2022, 36, .	0.5	0