List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4103759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of solid-state fermentation on factors and mechanisms influencing the bioactive compounds of grains and processing by-products. Critical Reviews in Food Science and Nutrition, 2023, 63, 5388-5413.	5.4	7
2	<scp>UHPLCâ€Qâ€Orbitrap</scp> â€based untargeted lipidomics reveals the variation of yolk lipids during egg storage. Journal of the Science of Food and Agriculture, 2022, 102, 5690-5699.	1.7	9
3	Identification of preserved egg white protein glycation and insight into the bioactivity. International Journal of Food Science and Technology, 2022, 57, 4963-4972.	1.3	0
4	Unveiling and application of the chicken egg proteome: An overview on a two-decade achievement. Food Chemistry, 2022, 393, 133403.	4.2	9
5	Methodologies for studying mechanisms of action of bioactive peptides: a multiomic approach. , 2021, , 275-284.		0
6	Comparative Lipidomics of Chick Yolk Sac during the Embryogenesis Provides Insight into Understanding the Development-Related Lipid Supply. Journal of Agricultural and Food Chemistry, 2021, 69, 7467-7477.	2.4	11
7	Phosphoproteomic analysis of duck egg yolk provides novel insights into its characteristics and biofunctions. Journal of the Science of Food and Agriculture, 2021, , .	1.7	2
8	Avian Eggshell Membrane as a Novel Biomaterial: A Review. Foods, 2021, 10, 2178.	1.9	24
9	Phenolics of cereal, pulse and oilseed processing by-products and potential effects of solid-state fermentation on their bioaccessibility, bioavailability and health benefits: A review. Trends in Food Science and Technology, 2021, 116, 954-974.	7.8	44
10	Comparative N-Glycoproteomic Analysis Provides Novel Insights into the Deterioration Mechanisms in Chicken Egg Vitelline Membrane during High-Temperature Storage. Journal of Agricultural and Food Chemistry, 2021, 69, 2354-2363.	2.4	4
11	Omics as a Window To Unravel the Dynamic Changes of Egg Components during Chicken Embryonic Development. Journal of Agricultural and Food Chemistry, 2021, 69, 12947-12955.	2.4	4
12	Comparative N â€glycoproteomic analysis of Tibetan and lowland chicken fertilized eggs: Implications on proteins biofunction and species evolution. Journal of Food Biochemistry, 2021, , e14006.	1.2	1
13	Synthetic phosphoserine dimer attenuates lipopolysaccharideâ€induced inflammatory response in human intestinal epithelial cells via activation of NFâ€rB and MAPKs cell signalling pathways. International Journal of Food Science and Technology, 2020, 55, 82-91.	1.3	2
14	Quantitative Comparative Integrated Proteomic and Phosphoproteomic Analysis of Chicken Egg Yolk Proteins under Diverse Storage Temperatures. Journal of Agricultural and Food Chemistry, 2020, 68, 1157-1167.	2.4	18
15	Chinese Sweet Leaf Tea (<i>Rubus suavissimus</i>) Mitigates LPS-Induced Low-Grade Chronic Inflammation and Reduces the Risk of Metabolic Disorders in a C57BL/6J Mouse Model. Journal of Agricultural and Food Chemistry, 2020, 68, 138-146.	2.4	26
16	Dietary Î ³ -Glutamyl Valine Ameliorates TNF-α-Induced Vascular Inflammation <i>via</i> Endothelial Calcium-Sensing Receptors. Journal of Agricultural and Food Chemistry, 2020, 68, 9139-9149.	2.4	17
17	Quantitative Comparative Proteomic Analysis of Chicken Egg Vitelline Membrane Proteins during High-Temperature Storage. Journal of Agricultural and Food Chemistry, 2020, 68, 9816-9825.	2.4	10
18	Chinese sweet tea (Rubus suavissimus) polyphenols attenuate the allergic responses in a Balb/c mouse model of egg allergy. Journal of Functional Foods, 2020, 67, 103827.	1.6	25

#	Article	IF	CITATIONS
19	Lactobacillus pentosus S-PT84 and Rubus suavissimus leaf extract suppress lipopolysaccharide-induced gut permeability and egg allergen uptake. Food Production Processing and Nutrition, 2020, 2, .	1.1	0
20	Oral intervention of Lactobacillus pentosus S-PT84 attenuates the allergenic responses in a BALB/C mouse model of egg allergy. Molecular Immunology, 2020, 120, 43-51.	1.0	12
21	<i>Lactobacillus pentosus</i> S-PT84 Prevents Low-Grade Chronic Inflammation-Associated Metabolic Disorders in a Lipopolysaccharide and High-Fat Diet C57/BL6J Mouse Model. Journal of Agricultural and Food Chemistry, 2020, 68, 4374-4386.	2.4	22
22	Egg Proteins. , 2019, , 74-84.		10
23	Comparison of Glycated Ovalbumin–Monosaccharides in the Attenuation of Ovalbumin-Induced Allergic Response in a BALB/C Mouse Model. Journal of Agricultural and Food Chemistry, 2019, 67, 8138-8148.	2.4	23
24	Î ³ -Glutamylvaline Prevents Low-Grade Chronic Inflammation via Activation of a Calcium-Sensing Receptor Pathway in 3T3-L1Mouse Adipocytes. Journal of Agricultural and Food Chemistry, 2019, 67, 8361-8369.	2.4	19
25	Anti-inflammatory Effect and Cellular Uptake Mechanism of Peptides from Common Bean (<i>Phaseolus vulga</i> L.) Milk and Yogurts in Caco-2 Mono- and Caco-2/EA.hy926 Co-culture Models. Journal of Agricultural and Food Chemistry, 2019, 67, 8370-8381.	2.4	34
26	Lactobacillus pentosus S-PT84 prevents LPS-induced low-grade chronic inflammation in a C57BL/6J mouse model. Journal of Functional Foods, 2019, 62, 103526.	1.6	9
27	Prophylactic effects of isomaltodextrin in a Balb/c mouse model of egg allergy. Npj Science of Food, 2019, 3, 23.	2.5	3
28	Effects of a synthetic diâ€phosphoserine peptide (SSâ€2) on gene expression profiling against TNFâ€Î± induced inflammation. International Journal of Food Science and Technology, 2019, 54, 2010-2020.	1.3	3
29	Current understanding of bioaccessibility and bioavailability of foodâ€derived bioactive peptides. International Journal of Food Science and Technology, 2019, 54, 2319-2320.	1.3	4
30	Therapeutic effects of isomaltodextrin in a BALB/c mouse model of egg allergy. Journal of Functional Foods, 2019, 55, 305-311.	1.6	7
31	The impact of oolong and black tea polyphenols on human health. Food Bioscience, 2019, 29, 55-61.	2.0	101
32	Anti-Inflammatory Activity of Isomaltodextrin in a C57BL/6NCrl Mouse Model with Lipopolysaccharide-Induced Low-Grade Chronic Inflammation. Nutrients, 2019, 11, 2791.	1.7	13
33	Recent Advances in the Understanding of the Health Benefits and Molecular Mechanisms Associated with Green Tea Polyphenols. Journal of Agricultural and Food Chemistry, 2019, 67, 1029-1043.	2.4	344
34	Is Calcium-Sensing Receptor a New Molecular Target toward Improving Gastrointestinal Health?. Journal of Agricultural and Food Chemistry, 2018, 66, 3995-3997.	2.4	3
35	Oral Immunotherapy with a Phosphorylated Hypoallergenic Allergen Ameliorates Allergic Responses More Effectively Than Intact Allergen in a Murine Model of Buckwheat Allergy. Molecular Nutrition and Food Research, 2018, 62, e1800303.	1.5	13
36	Intervention of Isomaltodextrin Mitigates Intestinal Inflammation in a Dextran Sodium Sulfate-Induced Mouse Model of Colitis via Inhibition of Toll-like Receptor-4. Journal of Agricultural and Food Chemistry, 2017, 65, 810-817.	2.4	32

#	Article	IF	CITATIONS
37	Adenine has an anti-inflammatory effect through the activation of adenine receptor signaling in mouse macrophage. Journal of Functional Foods, 2017, 28, 235-239.	1.6	16
38	Intervention of Dietary Dipeptide Gamma- <scp>l</scp> -Glutamyl- <scp>l</scp> -Valine (γ-EV) Ameliorates Inflammatory Response in a Mouse Model of LPS-Induced Sepsis. Journal of Agricultural and Food Chemistry, 2017, 65, 5953-5960.	2.4	26
39	Anti-inflammatory and anti-oxidative activities of daidzein and its sulfonic acid ester derivatives. Journal of Functional Foods, 2017, 35, 635-640.	1.6	33
40	The potential of food proteinâ€derived antiâ€inflammatory peptides against various chronic inflammatory diseases. Journal of the Science of Food and Agriculture, 2016, 96, 2303-2311.	1.7	95
41	Adenine Inhibits TNF-α Signaling in Intestinal Epithelial Cells and Reduces Mucosal Inflammation in a Dextran Sodium Sulfate-Induced Colitis Mouse Model. Journal of Agricultural and Food Chemistry, 2016, 64, 4227-4234.	2.4	20
42	The Soy Peptide Phe–Leu–Val Reduces TNFα-Induced Inflammatory Response and Insulin Resistance in Adipocytes. Journal of Medicinal Food, 2016, 19, 678-685.	0.8	40
43	Adenine attenuates the Ca2+ contraction-signaling pathway via adenine receptor-mediated signaling in rat vascular smooth muscle cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2016, 389, 999-1007.	1.4	4
44	Î ³ -Clutamyl valine supplementation-induced mitigation of gut inflammation in a porcine model of colitis. Journal of Functional Foods, 2016, 24, 558-567.	1.6	16
45	Antioxidant and anti-inflammatory activities of pyranoanthocyanins and other polyphenols from staghorn sumac (Rhus hirta L.) in Caco-2 cell models. Journal of Functional Foods, 2016, 20, 139-147.	1.6	47
46	Anti-inflammatory Effects of Poly- <scp>l</scp> -lysine in Intestinal Mucosal System Mediated by Calcium-Sensing Receptor Activation. Journal of Agricultural and Food Chemistry, 2015, 63, 10437-10447.	2.4	46
47	Calcium-Sensing Receptor (CaSR)-Mediated Anti-inflammatory Effects of <scp>l</scp> -Amino Acids in Intestinal Epithelial Cells. Journal of Agricultural and Food Chemistry, 2015, 63, 9987-9995.	2.4	46
48	Bioactive dietary peptides and amino acids in inflammatory bowel disease. Amino Acids, 2015, 47, 2127-2141.	1.2	54
49	γ-Clutamyl cysteine and γ-glutamyl valine inhibit TNF-α signaling in intestinal epithelial cells and reduce inflammation in a mouse model of colitis via allosteric activation of the calcium-sensing receptor. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 792-804.	1.8	125
50	Oral Administration of Hen Egg White Ovotransferrin Attenuates the Development of Colitis Induced by Dextran Sodium Sulfate in Mice. Journal of Agricultural and Food Chemistry, 2015, 63, 1532-1539.	2.4	48
51	Effect of heat denaturation of egg white proteins ovalbumin and ovomucoid on CD4+ T cell cytokine production and human mast cell histamine production. Journal of Functional Foods, 2015, 18, 28-34.	1.6	18
52	The Anti-atherosclerotic Dipeptide, Trp-His, Reduces Intestinal Inflammation through the Blockade of L-Type Ca ²⁺ Channels. Journal of Agricultural and Food Chemistry, 2015, 63, 6041-6050.	2.4	14
53	Antioxidative stress effect of phosphoserine dimers is mediated via activation of the Nrf2 signaling pathway. Molecular Nutrition and Food Research, 2015, 59, 303-314.	1.5	24
54	[Review: Symposium on Applied Glycoscience] Study of β-1,4-Mannobiose Coming from Hydrolyzed-copra Meal Effecting on Feeding Animal. Bulletin of Applied Glycoscience, 2015, 5, 105-112.	0.0	1

#	Article	IF	CITATIONS
55	Hydrolysate from Eggshell Membrane Ameliorates Intestinal Inflammation in Mice. International Journal of Molecular Sciences, 2014, 15, 22728-22742.	1.8	35
56	Peptides derived from eggshell membrane improve antioxidant enzyme activity and glutathione synthesis against oxidative damage in Caco-2 cells. Journal of Functional Foods, 2014, 11, 571-580.	1.6	45
57	In Vitro and ex Vivo Uptake of Clutathione (CSH) across the Intestinal Epithelium and Fate of Oral CSH after in Vivo Supplementation. Journal of Agricultural and Food Chemistry, 2014, 62, 9499-9506.	2.4	46
58	Effects of ovalbumin glycoconjugates on alleviation of orally induced egg allergy in mice via dendriticâ€cell maturation and Tâ€cell activation. Molecular Nutrition and Food Research, 2014, 58, 405-417.	1.5	41
59	Attenuation of Allergic Immune Response Phenotype by Mannosylated Egg White in Orally Induced Allergy in Balb/c Mice. Journal of Agricultural and Food Chemistry, 2014, 62, 9479-9487.	2.4	28
60	Antioxidant activity of enzymatic hydrolysates from eggshell membrane proteins and its protective capacity in human intestinal epithelial Caco-2 cells. Journal of Functional Foods, 2014, 10, 35-45.	1.6	111
61	Ovocalyxin-36 is an effector protein modulating the production of proinflammatory mediators. Veterinary Immunology and Immunopathology, 2014, 160, 1-11.	0.5	15
62	Anti-Inflammatory Effects of Mannanase-Hydrolyzed Copra Meal in a Porcine Model of Colitis. Journal of Veterinary Medical Science, 2014, 76, 645-651.	0.3	17
63	ā,°āfāf¹⁄4āfāfªā,¹⁄4āf¹⁄4ā,•āf§āf³ā뢱語科å¦è«−æ−‡æ•™è,²ā®å実åŒ−ï¹⁄4^å‰ç∵ï¹⁄4‰. Kagaku To Seibu	ıtsı 0,2 014	, 52) 179-183
64	Title is missing!. Bulletin of Applied Glycoscience, 2014, 4, B60.	0.0	0
65	Egg Components in Food Systems. , 2013, , 215-241.		1
66	Prophylaxis of Intranasally Induced Pollen Allergy in a BALB/C Mouse Model Using a Potential Prebiotic β-1, 4 Mannobiose. Allergology International, 2013, 62, 53-64.	1.4	5
67			
	β-1,4-Mannobiose Stimulates Innate Immune Responses and Induces TLR4-Dependent Activation of Mouse Macrophages but Reduces Severity of Inflammation during Endotoxemia in Mice. Journal of Nutrition, 2013, 143, 384-391.	1.3	28
68	 Î²-1,4-Mannobiose Stimulates Innate Immune Responses and Induces TLR4-Dependent Activation of Mouse Macrophages but Reduces Severity of Inflammation during Endotoxemia in Mice. Journal of Nutrition, 2013, 143, 384-391. Therapeutic Effects of Î²1, 4 Mannobiose in a Balb/c Mouse Model of Intranasally-Induced Pollen Allergy. Allergology International, 2013, 62, 65-76. 	1.3 1.4	28 9
68 69	β-1,4-Mannobiose Stimulates Innate Immune Responses and Induces TLR4-Dependent Activation of Mouse Macrophages but Reduces Severity of Inflammation during Endotoxemia in Mice. Journal of Nutrition, 2013, 143, 384-391.Therapeutic Effects of β1, 4 Mannobiose in a Balb/c Mouse Model of Intranasally-Induced Pollen Allergy. Allergology International, 2013, 62, 65-76.Soy-Derived Di- and Tripeptides Alleviate Colon and Ileum Inflammation in Pigs with Dextran Sodium Sulfate-Induced Colitis3. Journal of Nutrition, 2012, 142, 363-368.	1.3 1.4 1.3	28 9 83
68 69 70	β-1,4-Mannobiose Stimulates Innate Immune Responses and Induces TLR4-Dependent Activation of Mouse Macrophages but Reduces Severity of Inflammation during Endotoxemia in Mice. Journal of Nutrition, 2013, 143, 384-391.Therapeutic Effects of β1, 4 Mannobiose in a Balb/c Mouse Model of Intranasally-Induced Pollen Allergy. Allergology International, 2013, 62, 65-76.Soy-Derived Di- and Tripeptides Alleviate Colon and Ileum Inflammation in Pigs with Dextran Sodium Sulfate-Induced Colitis3. Journal of Nutrition, 2012, 142, 363-368.Egg Yolk Antibodies for Passive Immunity. Annual Review of Food Science and Technology, 2012, 3, 163-182.	1.3 1.4 1.3 5.1	28 9 83 142
68 69 70 71	β-1,4-Mannobiose Stimulates Innate Immune Responses and Induces TLR4-Dependent Activation of Mouse Macrophages but Reduces Severity of Inflammation during Endotoxemia in Mice. Journal of Nutrition, 2013, 143, 384-391.Therapeutic Effects of β1, 4 Mannobiose in a Balb/c Mouse Model of Intranasally-Induced Pollen Allergy. Allergology International, 2013, 62, 65-76.Soy-Derived Di- and Tripeptides Alleviate Colon and Ileum Inflammation in Pigs with Dextran Sodium Sulfate-Induced Colitis3. Journal of Nutrition, 2012, 142, 363-368.Egg Yolk Antibodies for Passive Immunity. Annual Review of Food Science and Technology, 2012, 3, 163-182.Comparative Proteomic Analysis of Egg White Proteins under Various Storage Temperatures. Journal of Agricultural and Food Chemistry, 2012, 60, 7746-7753.	1.3 1.4 1.3 5.1 2.4	28 9 83 142 62

#	Article	IF	CITATIONS
73	Phosphopeptides (PPPs) from hen egg yolk phosvitin exert anti-inflammatory activity via modulation of cytokine expression. Journal of Functional Foods, 2012, 4, 718-726.	1.6	31
74	Inhibitory effects of Quillaja saponin on IgE-mediated degranulation of rat basophilic leukemia RBL-2H3 Cells. Journal of Functional Foods, 2012, 4, 864-871.	1.6	18
75	Identification of Hen Egg Yolk-Derived Phosvitin Phosphopeptides and Their Effects on Gene Expression Profiling against Oxidative Stress-Induced Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2011, 59, 9207-9218.	2.4	58
76	Comparative Composition and Antioxidant Activity of Peptide Fractions Obtained by Ultrafiltration of Egg Yolk Protein Enzymatic Hydrolysates. Membranes, 2011, 1, 149-161.	1.4	37
77	Immunomodulatory Effects of Heated Ovomucoid-Depleted Egg White in a BALB/c Mouse Model of Egg Allergy. Journal of Agricultural and Food Chemistry, 2011, 59, 13195-13202.	2.4	37
78	β 1-4 mannobiose enhances Salmonella-killing activity and activates innate immune responses in chicken macrophages. Veterinary Immunology and Immunopathology, 2011, 139, 289-295.	0.5	44
79	l-Tryptophan exhibits therapeutic function in a porcine model of dextran sodium sulfate (DSS)-induced colitis. Journal of Nutritional Biochemistry, 2010, 21, 468-475.	1.9	183
80	On the use of ultrafiltration for the concentration and desalting of phosvitin from egg yolk protein concentrate. International Journal of Food Science and Technology, 2010, 45, 1633-1640.	1.3	6
81	Egg Yolk Peptides Up-regulate Clutathione Synthesis and Antioxidant Enzyme Activities in a Porcine Model of Intestinal Oxidative Stress. Journal of Agricultural and Food Chemistry, 2010, 58, 7624-7633.	2.4	61
82	Therapeutic potential of hen egg white peptides for the treatment of intestinal inflammation. Journal of Functional Foods, 2009, 1, 161-169.	1.6	47
83	Hen Egg Lysozyme Attenuates Inflammation and Modulates Local Gene Expression in a Porcine Model of Dextran Sodium Sulfate (DSS)-Induced Colitis. Journal of Agricultural and Food Chemistry, 2009, 57, 2233-2240.	2.4	129
84	Immunomodulatory Effects of Egg White Enzymatic Hydrolysates Containing Immunodominant Epitopes in a BALB/c Mouse Model of Egg Allergy. Journal of Agricultural and Food Chemistry, 2009, 57, 2241-2248.	2.4	45
85	Novel T-cell epitopes of ovalbumin in BALB/c mouse: Potential for peptide-immunotherapy. Biochemical and Biophysical Research Communications, 2009, 378, 203-208.	1.0	44
86	Regulation of Natural Health Products in Canada. Food Science and Technology Research, 2009, 15, 459-468.	0.3	3
87	Recent Advances in the Understanding of Egg Allergens: Basic, Industrial, and Clinical Perspectives. Journal of Agricultural and Food Chemistry, 2008, 56, 4874-4900.	2.4	159
88	Purification and Characterization of a Novel Fibrinolytic Enzyme from <i>Bacillus</i> sp. nov. SK006 Isolated from an Asian Traditional Fermented Shrimp Paste. Journal of Agricultural and Food Chemistry, 2008, 56, 1451-1457.	2.4	52
89	Egg Proteins and Peptides in Human Health-Chemistry, Bioactivity and Production. Current Pharmaceutical Design, 2007, 13, 875-884.	0.9	117
90	Antioxidative Activity of Amino Acids on Tissue Oxidative Stress in Human Intestinal Epithelial Cell Model. Journal of Agricultural and Food Chemistry, 2007, 55, 8458-8464.	2.4	70

#	Article	IF	CITATIONS
91	Oligophosphopeptides Derived from Egg Yolk Phosvitin Up-regulate γ-Glutamylcysteine Synthetase and Antioxidant Enzymes against Oxidative Stress in Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2007, 55, 2829-2835.	2.4	64
92	Antioxidant activity of tryptic digests of hen egg yolk phosvitin. Journal of the Science of Food and Agriculture, 2007, 87, 2604-2608.	1.7	72
93	Epitope characterization of ovalbumin in BALB/c mice using different entry routes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 200-212.	1.1	52
94	Isolation and characterization of antimicrobial proteins and peptide from chicken liver. Journal of Peptide Science, 2007, 13, 368-378.	0.8	30
95	Transport of a tripeptide, Cly-Pro-Hyp, across the porcine intestinal brush-border membrane. Journal of Peptide Science, 2007, 13, 468-474.	0.8	97
96	Concepts of Hypoallergenicity. , 2007, , 145-158.		2
97	Antioxidative Stress Activity of Oligophosphopeptides Derived from Hen Egg Yolk Phosvitin in Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2006, 54, 773-778.	2.4	91
98	QuillajaSaponin Can Modulate Ovalbumin-Induced IgE Allergic Responses through Regulation of Th1/Th2 Balance in a Murine Model. Journal of Agricultural and Food Chemistry, 2006, 54, 3271-3276.	2.4	24
99	Tandem copies of a human rotavirus VP8 epitope can induce specific neutralizing antibodies in BALB/c mice. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 1884-1893.	1.1	26
100	Antimicrobial proteins in chicken reproductive system. Biochemical and Biophysical Research Communications, 2006, 340, 648-655.	1.0	56
101	Engineered recombinant ovomucoid third domain can modulate allergenic response in Balb/c mice model. Biochemical and Biophysical Research Communications, 2006, 342, 710-717.	1.0	18
102	Phosvitin phosphopeptides increase iron uptake in a Caco-2 cell monolayer model. International Journal of Food Science and Technology, 2006, 41, 455-458.	1.3	19
103	The Na+â€neutral amino acid transporter ASCT2 gene is downâ€regulated along the jejunal cryptâ€villus axis quantified by realâ€time RTâ€PCR in formulaâ€fed neonatal pigs. FASEB Journal, 2006, 20, A1044.	0.2	0
104	Fibrinolytic enzymes in Asian traditional fermented foods. Food Research International, 2005, 38, 243-250.	2.9	133
105	Heat induced gelling properties of soy protein isolates prepared from different defatted soybean flours. Food Research International, 2005, 38, 377-385.	2.9	129
106	Advances in the Value of Eggs and Egg Components for Human Health. Journal of Agricultural and Food Chemistry, 2005, 53, 8421-8431.	2.4	408
107	Egg Proteins. Nutraceutical Science and Technology, 2005, , 445-459.	0.0	0
108	Ingredient Interactions. Food Additives, 2005, , 343-362.	0.1	0

#	Article	IF	CITATIONS
109	Biologically Active Hen Egg Components in Human Health and Disease. Journal of Poultry Science, 2004, 41, 1-29.	0.7	41
110	Passive Immunization Through Avian Egg Antibodies. Food Biotechnology, 2004, 18, 39-62.	0.6	23
111	Novel Fibrinolytic Enzyme in Fermented Shrimp Paste, a Traditional Asian Fermented Seasoning. Journal of Agricultural and Food Chemistry, 2004, 52, 980-986.	2.4	75
112	Antimicrobial Peptides Released by Enzymatic Hydrolysis of Hen Egg White Lysozyme. Journal of Agricultural and Food Chemistry, 2004, 52, 1088-1094.	2.4	253
113	Immunological comparison of native and recombinant egg allergen, ovalbumin, expressed inEscherichia coli. Biotechnology Letters, 2003, 25, 1917-1924.	1.1	22
114	Structural and immunological characterization of recombinant ovomucoid expressed in Escherichia coli. Biotechnology Letters, 2003, 25, 427-433.	1.1	9
115	Eggshell Matrix Proteins as Defense Mechanism of Avian Eggs. Journal of Agricultural and Food Chemistry, 2003, 51, 249-253.	2.4	65
116	Chicken Eggshell Matrix Proteins Enhance Calcium Transport in the Human Intestinal Epithelial Cells, Caco-2. Journal of Agricultural and Food Chemistry, 2003, 51, 6056-6061.	2.4	81
117	Genetic attachment of undecane peptides to ovomucoid third domain can suppress the production of specific IgG and IgE antibodies. Biochemical and Biophysical Research Communications, 2003, 311, 223-228.	1.0	6
118	Reduction of antigenicity and allergenicity of genetically modified egg white allergen, ovomucoid third domain. Biochemical and Biophysical Research Communications, 2003, 302, 133-137.	1.0	44
119	Surfactants Enhance the Tight-Junction Permeability of Food Allergens in Human Intestinal Epithelial Caco-2 Cells. International Archives of Allergy and Immunology, 2003, 130, 135-142.	0.9	70
120	Fine mapping and structural analysis of immunodominant IgE allergenic epitopes in chicken egg ovalbumin. Protein Engineering, Design and Selection, 2003, 16, 747-752.	1.0	68
121	Fine mapping of sequential neutralization epitopes on the subunit protein VP8 of human rotavirus. Biochemical Journal, 2003, 376, 269-275.	1.7	29
122	Identification and Fine Mapping of IgG and IgE Epitopes in Ovomucoid. Biochemical and Biophysical Research Communications, 2002, 292, 1070-1074.	1.0	76
123	Comparative Studies on Antigenicity and Allergenicity of Native and Denatured Egg White Proteins. Journal of Agricultural and Food Chemistry, 2002, 50, 2679-2683.	2.4	133
124	Fermented pork sausage fortified with commercial or hen eggshell calcium lactate. Meat Science, 2002, 62, 199-204.	2.7	65
125	Chicken Egg Yolk Antibodies as Therapeutics in Enteric Infectious Disease: A Review. Journal of Medicinal Food, 2002, 5, 159-169.	0.8	150
126	IgE Binding Properties of the Recombinant Ovomucoid Third Domain Expressed in Escherichia coli. Biochemical and Biophysical Research Communications, 2001, 282, 947-951.	1.0	9

#	Article	IF	CITATIONS
127	Cloning and Expression of Human Rotavirus Spike Protein, VP8*, in Escherichia coli. Biochemical and Biophysical Research Communications, 2001, 282, 1183-1188.	1.0	28
128	Phosphopeptides Derived from Hen Egg Yolk Phosvitin: Effect of Molecular Size on the Calcium-binding Properties. Bioscience, Biotechnology and Biochemistry, 2001, 65, 1187-1190.	0.6	77
129	The allergenicity of ovomucoid and the effect of its elimination from hen's egg white. Journal of the Science of Food and Agriculture, 2001, 81, 1540-1546.	1.7	12
130	Effects of Hen Egg Yolk Immunoglobulin in Passive Protection of Rainbow Trout againstYersinia ruckeri. Journal of Agricultural and Food Chemistry, 2000, 48, 110-115.	2.4	74
131	Preparation of Novel Functional Oligophosphopeptides from Hen Egg Yolk Phosvitin. Journal of Agricultural and Food Chemistry, 2000, 48, 990-994.	2.4	116
132	Immunochemical and Structural Analysis of Pepsin-Digested Egg White Ovomucoid. Journal of Agricultural and Food Chemistry, 2000, 48, 6261-6266.	2.4	84
133	Characterization of Residues in Human IgE and IgG Binding Site by Chemical Modification of Ovomucoid Third Domain. Biochemical and Biophysical Research Communications, 1999, 261, 610-613.	1.0	13
134	Characterization of oil-in-water emulsions stabilized by hen's egg yolk granule. Food Hydrocolloids, 1998, 12, 203-210.	5.6	45
135	Transglutaminase Cross-Linked Egg White Protein Films:Â Tensile Properties and Oxygen Permeability. Journal of Agricultural and Food Chemistry, 1998, 46, 4022-4029.	2.4	96
136	Adsorption Behavior of Egg Yolk Low-Density Lipoproteins in Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 1998, 46, 36-41.	2.4	47
137	Adsorption Properties of Cholesterol-Reduced Egg Yolk Low-Density Lipoprotein at Oil-in-Water Interfaces. Journal of Agricultural and Food Chemistry, 1998, 46, 2153-2158.	2.4	22
138	Characterization of IgE and IgG Epitopes on Ovomucoid Using Egg-White-Allergic Patients' Sera. Biochemical and Biophysical Research Communications, 1998, 253, 124-127.	1.0	51
139	Emulsifying Properties of Cholesterol-Reduced Egg Yolk Low-Density Lipoprotein. ACS Symposium Series, 1998, , 205-217.	0.5	0
140	Phosphorus-31 Nuclear Magnetic Resonance Study on Adsorption Behavior of Caseinate in Triacylglycerol-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 1997, 45, 68-73.	2.4	11
141	Competitive Adsorption of Hen's Egg Yolk Granule Lipoproteins and Phosvitin in Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 1997, 45, 4564-4570.	2.4	31
142	Effect of Dry Heat and Mild Alkaline Treatment on Functional Properties of Egg White Proteins. Journal of Agricultural and Food Chemistry, 1997, 45, 2924-2928.	2.4	95
143	Structural and Functional Changes of Hen's Egg Yolk Low-Density Lipoproteins with Phospholipase A2. Journal of Agricultural and Food Chemistry, 1997, 45, 4558-4563.	2.4	39
144	Separation ofSalmonella enteritidisfrom Experimentally Contaminated Liquid Eggs Using a Hen IgY Immobilized Immunomagnetic Separation System. Journal of Agricultural and Food Chemistry, 1997, 45, 3723-3727.	2.4	25

1

#	Article	IF	CITATIONS
145	Microfiltration and stabilization of egg yolk phospholipid emulsions by a microporous glass membrane. JAOCS, Journal of the American Oil Chemists' Society, 1997, 74, 1255-1258.	0.8	1
146	Laser Light Scattering Study on the Heat-Induced Ovalbumin Aggregates Related to Its Gelling Property. Journal of Agricultural and Food Chemistry, 1996, 44, 2086-2090.	2.4	36
147	Laser-Light-Scattering Properties of Heat-Induced Ovalbumin Gels. ACS Symposium Series, 1996, , 104-112.	0.5	0
148	Preparation and stabilization of simple and multiple emulsions using a microporous glass membrane. Colloids and Surfaces B: Biointerfaces, 1996, 6, 261-268.	2.5	82
149	Recent advances in the understanding of egg white protein functionality. Trends in Food Science and Technology, 1995, 6, 225-232.	7.8	535
150	Thermally induced changes in egg white proteins. Journal of Agricultural and Food Chemistry, 1990, 38, 2122-2125.	2.4	172
151	Bioavailability and Physiological Function of Eggshells and Eggshell Membranes. , 0, , 129-140.		4
152	Egg Allergens. , 0, , 239-288.		1
153	Production of Novel Proteins in Chicken Eggs. , 0, , 289-305.		0
154	Isoprenols. , 0, , 301-310.		0
155	Licorice Flavonoids. , 0, , 291-300.		1
156	Antiobesity Effect of Allenic Carotenoid, Fucoxanthin. , 0, , 145-160.		9
157	Functional Bioactive Proteins and Peptides in Nutrigenomics. , 0, , 129-144.		5
158	Green Tea Polyphenol-Modulated Genome Functions for Protective Health Benefits. , 0, , 201-237.		1
159	Omics in Nutrition and Health Research. , 0, , 11-29.		4
160	Peptidomics. , 0, , 375-386.		2
161	Regulation of Gene Transcription by Fatty Acids. , 0, , 97-114.		1

162 Challenges and Current Solutions in Proteomic Sample Preparations. , 0, , 351-365.

0

#	Article	IF	CITATIONS
163	Nutrigenomics and Proteomics in Health and Disease: An Overview. , 0, , 1-10.		0
164	Alteration in Gene Expression and Proteomic Profiles by Soy Isoflavone. , 0, , 181-200.		0
165	Oat Avenanthramides: A Novel Antioxidant. , 0, , 239-249.		0
166	Cancer-Preventive Effects and Molecular Actions of Anthocyanins. , 0, , 251-261.		0
167	Food Components Activating Capsaicin Receptor TRPV1. , 0, , 263-272.		0
168	New Therapeutic Effects of Anthocyanins: Antiobesity Effect, Antidiabetes Effect, and Vision Improvement. , 0, , 273-290.		0
169	Anti-inflammatory and Anticarcinogenesis Potentials of Citrus Coumarins and Polymethylated Flavonoids. , 0, , 311-324.		0
170	Probiotics: Food for Thought. , 0, , 325-338.		0
171	Microarrays: A Powerful Tool for Studying the Functions of Food and Its Nutrients. , 0, , 339-349.		0
172	Computational Methods in Cancer Gene Networking. , 0, , 367-374.		0
173	Toward Personalized Nutrition and Medicine: Promises and Challenges. , 0, , 31-46.		0
174	Obesity and Nuclear Receptors: Effective Genomic Strategies in Functional Foods. , 0, , 47-58.		0
175	Inflammatory Genes Involved in Obesity-Induced Inflammatory Responses and Pathologies. , 0, , 59-65.		0
176	Genomics and Proteomics in Allergy. , 0, , 67-81.		1
177	Beneficial Effects of Conjugated Linoleic Acid. , 0, , 83-96.		1

178

Nonnutrient Functionality of Amino Acids. , 0, , 115-127.