
Sokhee P Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4103312/publications.pdf Version: 2024-02-01

SORHEE D LUNC

#	Article	lF	CITATIONS
1	Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Applied Microbiology and Biotechnology, 2007, 77, 393-402.	3.6	377
2	Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technology, 2007, 98, 2568-2577.	9.6	369
3	Influence of External Resistance on Electrogenesis, Methanogenesis, and Anode Prokaryotic Communities in Microbial Fuel Cells. Applied and Environmental Microbiology, 2011, 77, 564-571.	3.1	215
4	Impedance Characteristics and Polarization Behavior of a Microbial Fuel Cell in Response to Short-Term Changes in Medium pH. Environmental Science & Technology, 2011, 45, 9069-9074.	10.0	104
5	Addition of reduced graphene oxide to an activated-carbon cathode increases electrical power generation of a microbial fuel cell by enhancing cathodic performance. Electrochimica Acta, 2019, 297, 613-622.	5.2	75
6	Improvement of air cathode performance in microbial fuel cells by using catalysts made by binding metal-organic framework and activated carbon through ultrasonication and solution precipitation. Chemical Engineering Journal, 2021, 424, 130388.	12.7	75
7	Effects of brush-anode configurations on performance and electrochemistry of microbial fuel cells. International Journal of Hydrogen Energy, 2017, 42, 27693-27700.	7.1	74
8	Agricultural Waste and Wastewater as Feedstock for Bioelectricity Generation Using Microbial Fuel Cells: Recent Advances. Fermentation, 2021, 7, 169.	3.0	72
9	Microbial desalination cell: Desalination through conserving energy. Desalination, 2022, 521, 115381.	8.2	71
10	Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source. Journal of Environmental Management, 2016, 184, 585-595.	7.8	67
11	Effects of wire-type and mesh-type anode current collectors on performance and electrochemistry of microbial fuel cells. Chemosphere, 2018, 209, 542-550.	8.2	67
12	Comparative evaluation of performance and electrochemistry of microbial fuel cells with different anode structures and materials. International Journal of Hydrogen Energy, 2017, 42, 27677-27684.	7.1	65
13	Influence of flowrates to a reverse electro-dialysis (RED) stack on performance and electrochemistry ofÂa microbial reverse electrodialysis cell (MRC). International Journal of Hydrogen Energy, 2017, 42, 27685-27692.	7.1	65
14	Comparison of hydrogen production and system performance in a microbial electrolysis cell containing cathodes made of non-platinum catalysts and binders. Journal of Water Process Engineering, 2021, 40, 101844.	5.6	64
15	Anode biofilm maturation time, stable cell performance time, and time-course electrochemistry in a single-chamber microbial fuel cell with a brush-anode. Journal of Industrial and Engineering Chemistry, 2022, 106, 269-278.	5.8	60
16	Microbial electrolysis cells for electromethanogenesis: Materials, configurations and operations. Environmental Engineering Research, 2022, 27, 200484-0.	2.5	57
17	Electrochemical Removal of Ammonium Nitrogen and COD of Domestic Wastewater using Platinum Coated Titanium as an Anode Electrode. Energies, 2019, 12, 883.	3.1	56
18	Development of thin anion-exchange pore-filled membranes for high diffusion dialysis performance. Journal of Membrane Science, 2013, 447, 80-86.	8.2	54

Sokhee P Jung

#	Article	IF	CITATIONS
19	Microbially Powered Electrochemical Systems Coupled with Membrane-based Technology for Sustainable Desalination and Efficient Wastewater Treatment. Daehan Hwan'gyeong Gonghag Hoeji, 2020, 42, 360-380.	1.1	50
20	Impedance and Thermodynamic Analysis of Bioanode, Abiotic Anode, and Riboflavin-Amended Anode in Microbial Fuel Cells. Bulletin of the Korean Chemical Society, 2012, 33, 3349-3354.	1.9	47
21	Polymer Film-Based Screening and Isolation of Polylactic Acid (PLA)-Degrading Microorganisms. Journal of Microbiology and Biotechnology, 2017, 27, 342-349.	2.1	44
22	Effects of vertical and horizontal configurations of different numbers of brush anodes on performance and electrochemistry of microbial fuel cells. Journal of Cleaner Production, 2020, 277, 124125.	9.3	43
23	Improved structures of stainless steel current collector increase power generation of microbial fuel cells by decreasing cathodic charge transfer impedance. Environmental Engineering Research, 2018, 23, 383-389.	2.5	36
24	Effects of substrate concentrations on performance of serially connected microbial fuel cells (MFCs) operated in a continuous mode. Biotechnology Letters, 2012, 34, 1833-1839.	2.2	35
25	Enhancing anaerobic digestion for rural wastewater treatment with granular activated carbon (GAC) supplementation. Bioresource Technology, 2020, 315, 123890.	9.6	35
26	Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology. Fermentation, 2021, 7, 291.	3.0	35
27	Nitrate-contaminated groundwater remediation by combined autotrophic and heterotrophic denitrification for sulfate and pH control: batch tests. Environmental Science and Pollution Research, 2013, 20, 9084-9091.	5.3	32
28	A Comprehensive Review on Oxygen Reduction Reaction in Microbial Fuel Cells. Journal of Renewable Materials, 2022, 10, 665-697.	2.2	32
29	Important Factors Influencing Microbial Fuel Cell Performance. , 2019, , 377-406.		30
30	Trends of microbial electrochemical technologies for nitrogen removal in wastewater treatment. Journal of the Korean Society of Water and Wastewater, 2020, 34, 345-356.	0.3	28
31	Recent Trends and Prospects of Microbial Fuel Cell Technology for Energy Positive Wastewater Treatment Plants Treating Organic Waste Resources. Daehan Hwan'gyeong Gonghag Hoeji, 2021, 43, 623-653.	1.1	26
32	Recent advancements in scaling up microbial fuel cells. , 2020, , 349-368.		25
33	Recent Trends of Oxygen Reduction Catalysts in Microbial Fuel Cells: A Review. Daehan Hwan'gyeong Gonghag Hoeji, 2019, 41, 657-675.	1.1	21
34	Recent advancements in the cathodic catalyst for the hydrogen evolution reaction in microbial electrolytic cells. International Journal of Hydrogen Energy, 2022, 47, 15333-15356.	7.1	20
35	Institutional Management Plan for Hazardous Chemical Substances in Textile Products. Daehan Hwan'gyeong Gonghag Hoeji, 2021, 43, 390-405.	1.1	16
36	Trend of Treatment and Management of Solar Panel Waste. Journal of Korea Society of Waste Management, 2021, 38, 200-213.	0.2	14

Sokhee P Jung

#	Article	IF	CITATIONS
37	Denitrification Rates and Their Controlling Factors in Streams of the Han River Basin with Different Land-Use Patterns. Pedosphere, 2014, 24, 516-528.	4.0	13
38	Synthesis conditions of porous clay heterostructure (PCH) optimized for volatile organic compounds (VOC) adsorption. Korean Journal of Chemical Engineering, 2019, 36, 1806-1813.	2.7	12
39	Performance and bacterial communities of successive alkalinity-producing systems (SAPSs) in passive treatment processes treating mine drainages differing in acidity and metal levels. Environmental Science and Pollution Research, 2014, 21, 3722-3732.	5.3	11
40	Pond Sediment Magnetite Grains Show a Distinctive Microbial Community. Microbial Ecology, 2015, 70, 168-174.	2.8	11
41	Optimal Power Allocation for Maximizing Energy Efficiency in DAS-Based IoT Network. IEEE Systems Journal, 2021, 15, 2342-2348.	4.6	11
42	Assessment of microbial diversity bias associated with soil heterogeneity and sequencing resolution in pyrosequencing analyses. Journal of Microbiology, 2014, 52, 574-580.	2.8	10
43	Characterization of Impedance and Polarization of Carbon-Felt Bioanodes and Activated-Carbon Cathodes in a Continuous-Flow Microbial Fuel Cell. Journal of the Korean Society of Urban Environment, 2018, 18, 177-191.	0.0	8
44	Enhanced denitrification of contaminated groundwater by novel bimetallic catalysts supported on kaolin-derived zeolite: effects of natural dissolved inorganic and organic matter. Environmental Science: Nano, 2020, 7, 3965-3978.	4.3	7
45	Energy-Efficiency Performance Analysis and Maximization Using Wireless Energy Harvesting in Wireless Sensor Networks. Energies, 2018, 11, 2917.	3.1	6
46	Increased hydrazine during partial nitritation process in upflow air-lift reactor fed with supernatant of anaerobic digester effluent. Korean Journal of Chemical Engineering, 2013, 30, 1235-1240.	2.7	5
47	Denitrification performance and microbial community variation during reverse osmosis concentrate treatment by sulfur denitrification process. , 0, 183, 54-62.		5
48	Impact of carbon and nitrogen on bioclogging in a sand grain managed aquifer recharge (MAR). Environmental Engineering Research, 2020, 25, 841-846.	2.5	5
49	Effective Cathode Catalysts for Oxygen Reduction Reactions in Microbial Fuel Cell. , 2020, , 189-210.		5
50	Microbial Electrosynthesis for Harnessing Value-Added Product via Carbon Dioxide Sequestering. , 2020, , 277-298.		4
51	Biotechnology in Passive Treatment of Acid Mine Drainage: a Review. Journal of the Korean Society of Mineral and Energy Resources Engineers, 2012, 49, 844-854.	0.4	3
52	Evaluation of Accelerated Mineral Carbonation Efficiency Using Industrial By-products and Estimation of Its Domestic Carbon Dioxide Reduction Potential. Daehan Hwan'gyeong Gonghag Hoeji, 2022, 44, 21-30.	1.1	2
53	Assessment of the Stabilization of Mercury Contaminated Soil Using Starfish. Agriculture (Switzerland), 2022, 12, 542.	3.1	2
54	Microbial Electrochemical Technologies Producing Electricity and Valuable Chemicals from		1

54 Biodegradation of Waste Organic Matters. , 2015, , 5.1.4-1-5.1.4-14.

1

#	Article	IF	CITATIONS
55	Denitrification Potential and Denitrifier Abundance in Downstream of Dams in Temperate Streams. Korean Journal of Microbiology, 2014, 50, 137-151.	0.2	1
56	Comparison of Microbial Composition and System Performance in Microbial Fuel Cells Operated with Different Resistances and Substrates. Proceedings of the Water Environment Federation, 2008, 2008, 1598-1603.	0.0	0