Weijun Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4103094/publications.pdf

Version: 2024-02-01

471509 610901 1,453 24 17 24 h-index citations g-index papers 25 25 25 2618 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A Patent Review on SARS Coronavirus Main Protease (3CL ^{pro}) Inhibitors. ChemMedChem, 2022, 17, e202100576.	3.2	23
2	PAR2 induces ovarian cancer cell motility by merging three signalling pathways to transactivate EGFR. British Journal of Pharmacology, 2021, 178, 913-932.	5.4	21
3	Achiral Derivatives of Hydroxamate AR-42 Potently Inhibit Class I HDAC Enzymes and Cancer Cell Proliferation. Journal of Medicinal Chemistry, 2020, 63, 5956-5971.	6.4	20
4	The molecular basis underpinning the potency and specificity of MAIT cell antigens. Nature Immunology, 2020, 21, 400-411.	14.5	41
5	Computer Modelling and Synthesis of Deoxy and Monohydroxy Analogues of a Ribitylaminouracil Bacterial Metabolite that Potently Activates Human T Cells. Chemistry - A European Journal, 2019, 25, 15594-15608.	3.3	14
6	A Potent Antagonist of Protease-Activated Receptor 2 That Inhibits Multiple Signaling Functions in Human Cancer Cells. Journal of Pharmacology and Experimental Therapeutics, 2018, 364, 246-257.	2.5	50
7	Chemical Approaches to Modulating Complement-Mediated Diseases. Journal of Medicinal Chemistry, 2018, 61, 3253-3276.	6.4	7
8	Effect of clinically approved HDAC inhibitors on Plasmodium, Leishmania and Schistosoma parasite growth. International Journal for Parasitology: Drugs and Drug Resistance, 2017, 7, 42-50.	3.4	82
9	Stabilizing short-lived Schiff base derivatives of 5-aminouracils that activate mucosal-associated invariant T cells. Nature Communications, 2017, 8, 14599.	12.8	113
10	Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells. Nature Immunology, 2017, 18, 402-411.	14.5	175
11	Orally Absorbed Cyclic Peptides. Chemical Reviews, 2017, 117, 8094-8128.	47.7	307
12	Mapping transmembrane residues of proteinase activated receptor 2 (PAR 2) that influence ligand-modulated calcium signaling. Pharmacological Research, 2017, 117, 328-342.	7.1	8
13	Helixconstraints and amino acid substitution in GLP-1 increase cAMP and insulin secretion but not beta-arrestin 2 signaling. European Journal of Medicinal Chemistry, 2017, 127, 703-714.	5. 5	19
14	Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists. Scientific Reports, 2016, 6, 24575.	3.3	38
15	Potent Small Agonists of Protease Activated Receptor 2. ACS Medicinal Chemistry Letters, 2016, 7, 105-110.	2.8	16
16	Three Homology Models of PAR2 Derived from Different Templates: Application to Antagonist Discovery. Journal of Chemical Information and Modeling, 2015, 55, 1181-1191.	5.4	16
17	Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets. Journal of Molecular Graphics and Modelling, 2015, 57, 76-88.	2.4	58
18	Repurposing Registered Drugs as Antagonists for Protease-Activated Receptor 2. Journal of Chemical Information and Modeling, 2015, 55, 2079-2084.	5.4	10

#	Article	IF	CITATION
19	Discovery of Novel Small Molecule Inhibitors of Dengue Viral NS2B-NS3 Protease Using Virtual Screening and Scaffold Hopping. Journal of Medicinal Chemistry, 2012, 55, 6278-6293.	6.4	67
20	Identification of a sub-micromolar, non-peptide inhibitor of \hat{l}^2 -secretase with low neural cytotoxicity through in silico screening. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5763-5766.	2.2	18
21	Molecular docking and structure–activity relationship studies on benzothiazole based non-peptidic BACE-1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6203-6207.	2.2	16
22	Novel non-peptide \hat{l}^2 -secretase inhibitors derived from structure-based virtual screening and bioassay. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3188-3192.	2.2	21
23	Potent Cationic Inhibitors of West Nile Virus NS2B/NS3 Protease With Serum Stability, Cell Permeability and Antiviral Activity. Journal of Medicinal Chemistry, 2008, 51, 5714-5721.	6.4	77
24	Binding interaction of quercetin-3-β-galactoside and its synthetic derivatives with SARS-CoV 3CLpro: Structure–activity relationship studies reveal salient pharmacophore features. Bioorganic and Medicinal Chemistry, 2006, 14, 8295-8306.	3.0	234