List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4103054/publications.pdf Version: 2024-02-01

FDIKLUBBEDTS

#	Article	IF	CITATIONS
1	Characterizing memory T helper cells in patients with psoriasis, subclinical, or early psoriatic arthritis using a machine learning algorithm. Arthritis Research and Therapy, 2022, 24, 28.	1.6	4
2	Basic Science Session 2. Recent Advances in Our Understanding of Psoriatic Arthritis Pathogenesis. Journal of Rheumatology, 2022, , jrheum.211321.	1.0	1
3	A Mechanistic Insight into the Pathogenic Role of Interleukin 17A in Systemic Autoimmune Diseases. Mediators of Inflammation, 2022, 2022, 1-14.	1.4	3
4	Epigenome wide association study of response to methotrexate in early rheumatoid arthritis patients. PLoS ONE, 2021, 16, e0247709.	1.1	7
5	Tissueâ€Resident Memory CD8+ T Cells From Skin Differentiate Psoriatic Arthritis From Psoriasis. Arthritis and Rheumatology, 2021, 73, 1220-1232.	2.9	40
6	IL-23 receptor deficiency results in lower bone mass via indirect regulation of bone formation. Scientific Reports, 2021, 11, 10244.	1.6	4
7	The heterogeneous human memory CCR6+ T helper-17 populations differ in T-bet and cytokine expression but all activate synovial fibroblasts in an IFNγ-independent manner. Arthritis Research and Therapy, 2021, 23, 157.	1.6	14
8	Interleukin-17A Drives IL-19 and IL-24 Expression in Skin Stromal Cells Regulating Keratinocyte Proliferation. Frontiers in Immunology, 2021, 12, 719562.	2.2	15
9	Single-Cell RNA Sequencing Reveals Heterogeneity and Functional Diversity of Lymphatic Endothelial Cells. International Journal of Molecular Sciences, 2021, 22, 11976.	1.8	9
10	How to Prepare Spectral Flow Cytometry Datasets for High Dimensional Data Analysis: A Practical Workflow. Frontiers in Immunology, 2021, 12, 768113.	2.2	12
11	CD4 ⁺ CCR6 ⁺ TÂcells, but not γδ TÂcells, are important for the ILâ€23Râ€dependent progression of antigenâ€induced inflammatory arthritis in mice. European Journal of Immunology, 2020, 50, 245-255.	1.6	7
12	Allogeneic Chondrogenic Mesenchymal Stromal Cells Alter Helper T Cell Subsets in CD4+ Memory T Cells. Tissue Engineering - Part A, 2020, 26, 490-502.	1.6	8
13	IL-6 but Not TNFα Levels Are Associated With Time to Pregnancy in Female Rheumatoid Arthritis Patients With a Wish to Conceive. Frontiers in Pharmacology, 2020, 11, 604866.	1.6	2
14	Achieving sustained minimal disease activity with methotrexate in early interleukin 23-driven early psoriatic arthritis. RMD Open, 2020, 6, e001175.	1.8	4
15	Brain-homing CD4 ⁺ T cells display glucocorticoid-resistant features in MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	10
16	Editorial: Immune-Modulatory Effects of Vitamin D. Frontiers in Immunology, 2020, 11, 596611.	2.2	10
17	Interleukinâ€17A Is Produced by CD4+ but Not CD8+ T Cells in Synovial Fluid Following T Cell Receptor Activation and Regulates Different Inflammatory Mediators Compared to Tumor Necrosis Factor in a Model of Psoriatic Arthritis Synovitis. Arthritis and Rheumatology, 2020, 72, 1303-1313.	2.9	14
18	Human Memory Th17 Cell Populations Change Into Anti-inflammatory Cells With Regulatory Capacity Upon Exposure to Active Vitamin D. Frontiers in Immunology, 2019, 10, 1504.	2.2	39

#	Article	IF	CITATIONS
19	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
20	The antiâ€inflammatory potency of biologics targeting tumour necrosis factorâ€Î±, interleukin (<scp>IL</scp>)â€17A, <scp>IL</scp> â€12/23 and <scp>CD</scp> 20 in hidradenitis suppurativa: an <i>ex vivo</i> study. British Journal of Dermatology, 2019, 181, 314-323.	1.4	38
21	Lack of IL-17 Receptor A signaling aggravates lymphoproliferation in C57BL/6 lpr mice. Scientific Reports, 2019, 9, 4032.	1.6	11
22	T helper 17.1 cells associate with multiple sclerosis disease activity: perspectives for early intervention. Brain, 2018, 141, 1334-1349.	3.7	161
23	From patients with arthralgia, pre-RA and recently diagnosed RA: what is the current status of understanding RA pathogenesis?. RMD Open, 2018, 4, e000256.	1.8	29
24	A cellular and molecular view of T helper 17Âcell plasticity in autoimmunity. Journal of Autoimmunity, 2018, 87, 1-15.	3.0	232
25	The role of ILâ€23 receptor signaling in inflammationâ€mediated erosive autoimmune arthritis and bone remodeling. European Journal of Immunology, 2018, 48, 220-229.	1.6	23
26	1,25(OH)2D3 and dexamethasone additively suppress synovial fibroblast activation by CCR6+ T helper memory cells and enhance the effect of tumor necrosis factor alpha blockade. Arthritis Research and Therapy, 2018, 20, 212.	1.6	26
27	House dust miteâ€driven neutrophilic airway inflammation in mice with TNFAlP3â€deficient myeloid cells is ILâ€17â€independent. Clinical and Experimental Allergy, 2018, 48, 1705-1714.	1.4	7
28	Experimental Arthritis Mouse Models Driven by Adaptive and/or Innate Inflammation. Methods in Molecular Biology, 2017, 1559, 391-410.	0.4	16
29	Enhanced Bruton's Tyrosine Kinase Activity in Peripheral Blood B Lymphocytes From Patients With Autoimmune Disease. Arthritis and Rheumatology, 2017, 69, 1313-1324.	2.9	94
30	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	1.6	505
31	Interleukin-17 receptor A (IL-17RA) as a central regulator of the protective immune response against Giardia. Scientific Reports, 2017, 7, 8520.	1.6	23
32	02.45â€Enhanced bruton's tyrosine kinase activity in peripheral blood b lymphocytes of autoimmune disease patients. , 2017, , .		0
33	Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Frontiers in Immunology, 2017, 8, 294.	2.2	56
34	Human mast cells capture, store, and release bioactive, exogenous IL-17A. Journal of Leukocyte Biology, 2016, 100, 453-462.	1.5	69
35	Loss of ILâ€22 inhibits autoantibody formation in collagenâ€induced arthritis in mice. European Journal of Immunology, 2016, 46, 1404-1414.	1.6	30
36	Association of Increased Treg Cell Levels With Elevated Indoleamine 2,3â€Dioxygenase Activity and an Imbalanced Kynurenine Pathway in Interferonâ€Positive Primary Sjögren's Syndrome. Arthritis and Rheumatology, 2016, 68, 1688-1699.	2.9	45

#	Article	IF	CITATIONS
37	Animal Models of Bone Loss in Inflammatory Arthritis: from Cytokines in the Bench to Novel Treatments for Bone Loss in the Bedside—a Comprehensive Review. Clinical Reviews in Allergy and Immunology, 2016, 51, 27-47.	2.9	50
38	Vitamin D in Autoimmunity: Molecular Mechanisms and Therapeutic Potential. Frontiers in Immunology, 2016, 7, 697.	2.2	298
39	CCR6+ Th cell populations distinguish ACPA positive from ACPA negative rheumatoid arthritis. Arthritis Research and Therapy, 2015, 17, 344.	1.6	36
40	A2.14â€Human mast cells engulf and store exogenous IL-17A. Annals of the Rheumatic Diseases, 2015, 74, A21.1-A21.	0.5	0
41	Preventive effects of dietary hydroxytyrosol acetate, an extra virgin olive oil polyphenol in murine collagen-induced arthritis. Molecular Nutrition and Food Research, 2015, 59, 2537-2546.	1.5	60
42	Dendritic Cell-Specific Deletion of β-Catenin Results in Fewer Regulatory T-Cells without Exacerbating Autoimmune Collagen-Induced Arthritis. PLoS ONE, 2015, 10, e0142972.	1.1	10
43	Arthritic and non-arthritic synovial fluids modulate IL10 and IL1RA gene expression in differentially activated primary human monocytes. Osteoarthritis and Cartilage, 2015, 23, 1853-1857.	0.6	47
44	Surrogate light chain expression beyond the pre-B cell stage promotes tolerance in a dose-dependent fashion. Journal of Autoimmunity, 2015, 57, 30-41.	3.0	2
45	The IL-23–IL-17 axis in inflammatory arthritis. Nature Reviews Rheumatology, 2015, 11, 415-429.	3.5	338
46	The role and modulation of CCR6+ Th17 cell populations in rheumatoid arthritis. Cytokine, 2015, 74, 43-53.	1.4	125
47	Angels and demons: Th17 cells represent a beneficial response, while neutrophil IL-17 is associated with poor prognosis in squamous cervical cancer. Oncolmmunology, 2015, 4, e984539.	2.1	95
48	T-helper 17 cell cytokines and interferon type I: partners in crime in systemic lupus erythematosus?. Arthritis Research and Therapy, 2014, 16, R62.	1.6	37
49	Giardia muris Infection in Mice Is Associated with a Protective Interleukin 17A Response and Induction of Peroxisome Proliferator-Activated Receptor Alpha. Infection and Immunity, 2014, 82, 3333-3340.	1.0	56
50	A human vitamin D receptor mutation causes rickets and impaired Th1/Th17 responses. Bone, 2014, 69, 6-11.	1.4	12
51	Absence of Interleukinâ€17 Receptor A Signaling Prevents Autoimmune Inflammation of the Joint and Leads to a Th2â€like Phenotype in Collagenâ€Induced Arthritis. Arthritis and Rheumatology, 2014, 66, 340-349.	2.9	45
52	FcγRIIb on Myeloid Cells Rather than on B Cells Protects from Collagen-Induced Arthritis. Journal of Immunology, 2014, 192, 5540-5547.	0.4	14
53	Role of T Lymphocytes in the Development of Rheumatoid Arthritis. Implications for Treatment. Current Pharmaceutical Design, 2014, 21, 142-146.	0.9	37
54	IL-17/Th17 mediated synovial inflammation is IL-22 independent. Annals of the Rheumatic Diseases, 2013, 72, 1700-1707.	0.5	61

#	Article	lF	CITATIONS
55	Synovial Fibroblasts Directly Induce Th17 Pathogenicity via the Cyclooxygenase/Prostaglandin E2 Pathway, Independent of IL-23. Journal of Immunology, 2013, 191, 1364-1372.	0.4	90
56	IL-23 Dependent and Independent Stages of Experimental Arthritis: No Clinical Effect of Therapeutic IL-23p19 Inhibition in Collagen-induced Arthritis. PLoS ONE, 2013, 8, e57553.	1.1	41
57	TNF blockade requires 1,25(OH)2D3 to control human Th17-mediated synovial inflammation. Annals of the Rheumatic Diseases, 2012, 71, 606-612.	0.5	80
58	Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukinâ€17A production. Arthritis and Rheumatism, 2011, 63, 73-83.	6.7	298
59	Tumor necrosis factor–interleukinâ€17 interplay induces S100A8, interleukinâ€1β, and matrix metalloproteinases, and drives irreversible cartilage destruction in murine arthritis: Rationale for combination treatment during arthritis. Arthritis and Rheumatism, 2011, 63, 2329-2339.	6.7	119
60	Th17 cytokines and arthritis. Seminars in Immunopathology, 2010, 32, 43-53.	2.8	144
61	1,25â€dihydroxyvitamin D ₃ modulates Th17 polarization and interleukinâ€22 expression by memory T cells from patients with early rheumatoid arthritis. Arthritis and Rheumatism, 2010, 62, 132-142.	6.7	248
62	Interleukinâ€23 promotes Th17 differentiation by inhibiting Tâ€bet and FoxP3 and is required for elevation of interleukinâ€22, but not interleukinâ€21, in autoimmune experimental arthritis. Arthritis and Rheumatism, 2010, 62, 1043-1050.	6.7	61
63	Role of Interleukin 17 in Arthritis Chronicity through Survival of Synoviocytes via Regulation of Synoviolin Expression. PLoS ONE, 2010, 5, e13416.	1.1	76
64	GATAâ€3 protects against severe joint inflammation and bone erosion and reduces differentiation of Th17 cells during experimental arthritis. Arthritis and Rheumatism, 2009, 60, 750-759.	6.7	65
65	Interleukin-23 is critical for full-blown expression of a non-autoimmune destructive arthritis and regulates interleukin-17A and RORγt in γδT cells. Arthritis Research and Therapy, 2009, 11, R194.	1.6	42
66	The Pronounced Th17 Profile in Systemic Sclerosis (SSc) Together with Intracellular Expression of TGFβ and IFNγ Distinguishes SSc Phenotypes. PLoS ONE, 2009, 4, e5903.	1.1	158
67	The IL-12/IL-23 axis and its role in Th17 cell development, pathology and plasticity in arthritis. Current Opinion in Investigational Drugs, 2009, 10, 452-62.	2.3	26
68	IL-17/Th17 targeting: On the road to prevent chronic destructive arthritis?. Cytokine, 2008, 41, 84-91.	1.4	267
69	IL-17 produced by Paneth cells drives TNF-induced shock. Journal of Experimental Medicine, 2008, 205, 1755-1761.	4.2	167
70	Interleukin-17 Acts Independently of TNF-α under Arthritic Conditions. Journal of Immunology, 2006, 176, 6262-6269.	0.4	118
71	Induction of cartilage damage by overexpression of T cell interleukin-17A in experimental arthritis in mice deficient in interleukin-1. Arthritis and Rheumatism, 2005, 52, 975-983.	6.7	89
72	Interleukin-17 receptor deficiency results in impaired synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and 13 and prevents cartilage destruction during chronic reactivated streptococcal cell wall-induced arthritis. Arthritis and Rheumatism, 2005, 52, 3239-3247.	6.7	177

#	Article	IF	CITATIONS
73	Requirement of IL-17 Receptor Signaling in Radiation-Resistant Cells in the Joint for Full Progression of Destructive Synovitis. Journal of Immunology, 2005, 175, 3360-3368.	0.4	81
74	Blocking of Interleukin-17 during Reactivation of Experimental Arthritis Prevents Joint Inflammation and Bone Erosion by Decreasing RANKL and Interleukin-1. American Journal of Pathology, 2005, 167, 141-149.	1.9	290
75	The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Research, 2005, 7, 29.	2.0	351
76	Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis and Rheumatism, 2004, 50, 650-659.	6.7	660
77	Association of interleukin-18 expression with enhanced levels of both interleukin-1? and tumor necrosis factor ? in knee synovial tissue of patients with rheumatoid arthritis. Arthritis and Rheumatism, 2003, 48, 339-347.	6.7	121
78	Toll-Like Receptor 2 Pathway Drives Streptococcal Cell Wall-Induced Joint Inflammation: Critical Role of Myeloid Differentiation Factor 88. Journal of Immunology, 2003, 171, 6145-6153.	0.4	199
79	IL-17 Promotes Bone Erosion in Murine Collagen-Induced Arthritis Through Loss of the Receptor Activator of NF-κB Ligand/Osteoprotegerin Balance. Journal of Immunology, 2003, 170, 2655-2662.	0.4	309
80	The role of IL-17 and family members in the pathogenesis of arthritis. Current Opinion in Investigational Drugs, 2003, 4, 572-7.	2.3	38
81	Increase in expression of receptor activator of nuclear factor ?B at sites of bone erosion correlates with progression of inflammation in evolving collagen-induced arthritis. Arthritis and Rheumatism, 2002, 46, 3055-3064.	6.7	71
82	Overexpression of IL-17 in the knee joint of collagen type II immunized mice promotes collagen arthritis and aggravates joint destruction. Inflammation Research, 2002, 51, 102-104.	1.6	139
83	IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Research, 2001, 3, 168.	2.0	296
84	IL-1-Independent Role of IL-17 in Synovial Inflammation and Joint Destruction During Collagen-Induced Arthritis. Journal of Immunology, 2001, 167, 1004-1013.	0.4	360
85	Potential of modulatory cytokines in the rheumatoid arthritis process. Drug News and Perspectives, 2001, 14, 517.	1.9	9
86	THU0039â€Local il-17 gene therapy accelerates collagen arthritis with severe bone erosion and rank ligand and rank expression in synovial infiltrate and at bone erosion sites. , 2001, , .		0
87	Reduction of interleukinâ€17–induced inhibition of chondrocyte proteoglycan synthesis in intact murine articular cartilage by interleukinâ€4. Arthritis and Rheumatism, 2000, 43, 1300-1306.	6.7	97
88	IL-4 gene therapy for collagen arthritis suppresses synovial IL-17 and osteoprotegerin ligand and prevents bone erosion. Journal of Clinical Investigation, 2000, 105, 1697-1710.	3.9	272
89	Adenoviral vector-mediated overexpression of IL-4 in the knee joint of mice with collagen-induced arthritis prevents cartilage destruction. Journal of Immunology, 1999, 163, 4546-56.	0.4	133
90	Role of interleukin-4 and interleukin-10 in murine collagen-induced arthritis. Protective effect of interleukin-4 and interleukin-10 treatment on cartilage destruction. Arthritis and Rheumatism, 1997, 40, 249-260.	6.7	377