
Gokul C Iyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4102922/publications.pdf Version: 2024-02-01

CORILI C IVED

#	Article	lF	CITATIONS
1	Implications of different income distributions for future residential energy demand in the U.S Environmental Research Letters, 2022, 17, 014031.	5.2	7
2	Quantifying the regional stranded asset risks from new coal plants under 1.5 °C. Environmental Research Letters, 2022, 17, 024029.	5.2	18
3	Climate change impacts on the energy system: a model comparison. Environmental Research Letters, 2022, 17, 034036.	5.2	3
4	Good practice policies to bridge the emissions gap in key countries. Global Environmental Change, 2022, 73, 102472.	7.8	18
5	Transparency crucial to Paris climate scenarios—Response. Science, 2022, 375, 828-828.	12.6	0
6	GCAM-USA v5.3_water_dispatch: integrated modeling of subnational US energy, water, and land systems within a global framework. Geoscientific Model Development, 2022, 15, 2533-2559.	3.6	10
7	Energy system transitions and low-carbon pathways in Australia, Brazil, Canada, China, EU-28, India, Indonesia, Japan, Republic of Korea, Russia and the United States. Energy, 2021, 216, 119385.	8.8	128
8	Power sector investment implications of climate impacts on renewable resources in Latin America and the Caribbean. Nature Communications, 2021, 12, 1276.	12.8	30
9	Impacts of long-term temperature change and variability on electricity investments. Nature Communications, 2021, 12, 1643.	12.8	26
10	Assessing China's efforts to pursue the 1.5°C warming limit. Science, 2021, 372, 378-385.	12.6	267
11	Integrated assessment model diagnostics: key indicators and model evolution. Environmental Research Letters, 2021, 16, 054046.	5.2	36
12	Climate policy models need to get real about people — here's how. Nature, 2021, 594, 174-176.	27.8	81
13	The future evolution of energy-water-agriculture interconnectivity across the US. Environmental Research Letters, 2021, 16, 065010.	5.2	11
14	The surprisingly inexpensive cost of state-driven emission control strategies. Nature Climate Change, 2021, 11, 738-745.	18.8	28
15	Agricultural impacts of sustainable water use in the United States. Scientific Reports, 2021, 11, 17917.	3.3	14
16	Global urban growth between 1870 and 2100 from integrated high resolution mapped data and urban dynamic modeling. Communications Earth & Environment, 2021, 2, .	6.8	43
17	plutus: An R package to calculate electricity investments and stranded assets from the Global Change Analysis Model (GCAM). Journal of Open Source Software, 2021, 6, 3212.	4.6	1
18	cerf: A Python package to evaluate the feasibility and costs of power plant siting for alternative futures. Journal of Open Source Software, 2021, 6, 3601.	4.6	1

Gokul C Iyer

#	Article	IF	CITATIONS
19	The role of global agricultural market integration in multiregional economic modeling: Using hindcast experiments to validate an Armington model. Economic Analysis and Policy, 2021, 72, 1-17.	6.6	11
20	The role of carbon dioxide removal in net-zero emissions pledges. Energy and Climate Change, 2021, 2, 100043.	4.4	28
21	US state-level capacity expansion pathways with improved modeling of the power sector dynamics within a multisector model. Energy Strategy Reviews, 2021, 38, 100739.	7.3	1
22	To achieve deep cuts in US emissions, state-driven policy is only slightly more expensive than nationally uniform policy. Nature Climate Change, 2021, 11, 911-912.	18.8	1
23	Future evolution of virtual water trading in the United States electricity sector. Environmental Research Letters, 2021, 16, 124010.	5.2	3
24	Global roll-out of comprehensive policy measures may aid in bridging emissions gap. Nature Communications, 2021, 12, 6419.	12.8	37
25	The implications of uncertain renewable resource potentials for global wind and solar electricity projections. Environmental Research Letters, 2021, 16, 124060.	5.2	5
26	Future western U.S. building electricity consumption in response to climate and population drivers: A comparative study of the impact of model structure. Energy, 2020, 208, 118312.	8.8	8
27	Impacts of climate change on energy systems in global and regional scenarios. Nature Energy, 2020, 5, 794-802.	39.5	180
28	Taking stock of national climate policies to evaluate implementation of the Paris Agreement. Nature Communications, 2020, 11, 2096.	12.8	241
29	Stranded asset implications of the Paris Agreement in Latin America and the Caribbean. Environmental Research Letters, 2020, 15, 044026.	5.2	37
30	US energy system transitions under cumulative emissions budgets. Climatic Change, 2020, 162, 1947-1963.	3.6	24
31	Evaluating long-term model-based scenarios of the energy system. Energy Strategy Reviews, 2020, 32, 100551.	7.3	12
32	Representing power sector detail and flexibility in a multi-sector model. Energy Strategy Reviews, 2019, 26, 100411.	7.3	13
33	GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems. Geoscientific Model Development, 2019, 12, 677-698.	3.6	211
34	Implications of water constraints on electricity capacity expansion in the United States. Nature Sustainability, 2019, 2, 206-213.	23.7	33
35	A decent life. Nature Energy, 2019, 4, 1010-1011.	39.5	5
36	Quantifying operational lifetimes for coal power plants under the Paris goals. Nature Communications, 2019, 10, 4759.	12.8	112

Gokul C Iyer

#	Article	IF	CITATIONS
37	Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nature Communications, 2019, 10, 5229.	12.8	188
38	Looking under the hood: A comparison of techno-economic assumptions across national and global integrated assessment models. Energy, 2019, 172, 1254-1267.	8.8	107
39	<i>gcamdata</i> : An R Package for Preparation, Synthesis, andÂTracking of Input Data for the GCAM Integrated Human-Earth Systems Model. Journal of Open Research Software, 2019, 7, 6.	5.9	17
40	Implications of sustainable development considerations for comparability across nationally determined contributions. Nature Climate Change, 2018, 8, 124-129.	18.8	55
41	Coupling national and global models to explore policy impacts of NDCs. Energy Policy, 2018, 118, 462-473.	8.8	42
42	Residual fossil CO2 emissions in 1.5–2 °C pathways. Nature Climate Change, 2018, 8, 626-633.	18.8	380
43	Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nature Energy, 2018, 3, 589-599.	39.5	377
44	Measuring progress from nationally determined contributions to mid-century strategies. Nature Climate Change, 2017, 7, 871-874.	18.8	73
45	Economic tools to promote transparency and comparability in the Paris Agreement. Nature Climate Change, 2016, 6, 1000-1004.	18.8	122
46	The contribution of Paris to limit global warming to 2 °C. Environmental Research Letters, 2015, 10, 125002.	5.2	69
47	Improved representation of investment decisions in assessments of CO2 mitigation. Nature Climate Change, 2015, 5, 436-440.	18.8	68
48	Can Paris pledges avert severe climate change?. Science, 2015, 350, 1168-1169.	12.6	260
49	Diffusion of low-carbon technologies and the feasibility of long-term climate targets. Technological Forecasting and Social Change, 2015, 90, 103-118.	11.6	111
50	Implications of small modular reactors for climate change mitigation. Energy Economics, 2014, 45, 144-154.	12.1	24