
Renate M R Wellen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4102912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polypropylene/wood powder composites: Evaluation of PP viscosity in thermal, mechanical, thermomechanical, and morphological characters. Journal of Thermoplastic Composite Materials, 2022, 35, 71-92.	2.6	22
2	Annealing Effect on Pla/Eva Blends Performance. Journal of Polymers and the Environment, 2022, 30, 541-554.	2.4	22
3	Biodegradation and performance of poly(ɛ aprolactone)/macaÃba biocomposites. Polymer Composites, 2022, 43, 998-1011.	2.3	4
4	Approaches on the Complex Crystallization in PLA/Babassu Based on Modulated Differential Scanning Calorimetry Analyses. Journal of Polymers and the Environment, 2022, 30, 3840-3851.	2.4	6
5	From Waste to Potential Reuse: Mixtures of Polypropylene/Recycled Copolymer Polypropylene from Industrial Containers: Seeking Sustainable Materials. Sustainability, 2022, 14, 6509.	1.6	6
6	On the Curing of ESO/MTHPA/DEH 35 and ESO/MTHPA/DEH 35/TIN. Journal of Polymers and the Environment, 2022, 30, 4014-4022.	2.4	5
7	Crystallization behavior of polycaprolactone/babassu compounds. Journal of Thermal Analysis and Calorimetry, 2021, 143, 2963-2972.	2.0	10
8	Polypropylene/wood powder/ethylene propylene diene monomer rubberâ€maleic anhydride composites: Effect of PP melt flow index on the thermal, mechanical, thermomechanical, water absorption, and morphological parameters. Polymer Composites, 2021, 42, 484-497.	2.3	25
9	Approaches on the acrylonitrileâ€butadieneâ€styrene functionalization through maleic anhydride and dicumyl peroxide. Journal of Vinyl and Additive Technology, 2021, 27, 308-318.	1.8	18
10	Annealing efficacy on PLA. Insights on mechanical, thermomechanical and crystallinity characters. Momento, 2021, , 1-17.	0.3	15
11	On the nonisothermal melt crystallization kinetics of industrial batch crosslinked polyethylene. Journal of Applied Polymer Science, 2021, 138, 50807.	1.3	4
12	On the curing kinetics of epoxy/PLA compounds. Journal of Materials Research, 2021, 36, 2973-2986.	1.2	1
13	Effect of injection parameters on the thermal, mechanical and thermomechanical properties of polycaprolactone (PCL). Journal of Elastomers and Plastics, 2021, 53, 1045-1062.	0.7	6
14	Approaches on <scp>PCL</scp> /m <scp>acaÃba biocomposites</scp> ―mechanical, thermal, morphological properties and crystallization kinetics. Polymers for Advanced Technologies, 2021, 32, 3572-3587.	1.6	8
15	Reactive processing of <scp>PA6</scp> / <scp>EPDMâ€MA</scp> blends as modifier for application and development of highâ€performance polypropylene. Journal of Vinyl and Additive Technology, 2021, 27, 736-756.	1.8	20
16	The investigation of the stress cracking behavior of <scp>PBT</scp> by acoustic emission. Polymers for Advanced Technologies, 2021, 32, 4787-4804.	1.6	3
17	Crossing over the curing and degradation of DGEBA/MTHPA/Eggshell to disclose the reactionary system. Composites Part B: Engineering, 2021, 224, 109181.	5.9	6
18	Production of Eco-Sustainable Materials: Compatibilizing Action in Poly (Lactic Acid)/High-Density Biopolyethylene Bioblends. Sustainability, 2021, 13, 12157.	1.6	16

#	Article	IF	CITATIONS
19	Kinetic investigation of eggshell powders as biobased epoxy catalyzer. Composites Part B: Engineering, 2020, 183, 107651.	5.9	17
20	An investigation of PLA/Babassu cold crystallization kinetics. Journal of Thermal Analysis and Calorimetry, 2020, 141, 1389-1397.	2.0	21
21	Approaches on the non-isothermal curing kinetics of epoxy/PCL blends. Journal of Materials Research and Technology, 2020, 9, 13539-13554.	2.6	15
22	Tailored PCL/MacaÃba fiber to reach sustainable biocomposites. Journal of Materials Research and Technology, 2020, 9, 9691-9708.	2.6	30
23	Multivariate Model Based on UV-Vis Spectroscopy and Regression in Partial Least Squares for Determination of Diameter and Polydispersity of Silver Nanoparticles in Colloidal Suspensions. Journal of Nanomaterials, 2020, 2020, 1-10.	1.5	4
24	Insights of PHB/QC Biocomposites: Thermal, Tensile and Morphological Properties. Journal of Polymers and the Environment, 2020, 28, 2481-2489.	2.4	1
25	New approaches of curing and degradation on epoxy/eggshell composites. Composites Part B: Engineering, 2020, 196, 108125.	5.9	18
26	Influence of PCL on the epoxy workability, insights from thermal and spectroscopic analyses. Polymer Testing, 2020, 89, 106679.	2.3	10
27	The Effect of ZnO on the Failure of PET by Environmental Stress Cracking. Materials, 2020, 13, 2844.	1.3	18
28	Microbiological and cytotoxic perspectives of active PCL/ZnO film for food packaging. Materials Research Express, 2020, 7, 025312.	0.8	14
29	RSM applied to PS/SBRr/SEBS Blends. Proper tool for maximized properties. Materials Research Express, 2020, 7, 015327.	0.8	1
30	Insights into the curing kinetics of epoxy/PLA: Implications of the networking structure. EXPRESS Polymer Letters, 2020, 14, 1180-1196.	1.1	20
31	Efeito do recozimento nas propriedades mecânicas, térmicas e termomecânicas da PCL. Research, Society and Development, 2020, 9, e13191210764.	0.0	4
32	Photo-degradation of PS/SBRr blends compatibilized with SEBS. Materials Research Express, 2019, 6, 095327.	0.8	3
33	Compatibility and characterization of Bio-PE/PCL blends. Polimeros, 2019, 29, .	0.2	15
34	Biocomposites based on PCL and macaiba fiber. Detailed characterization of main properties. Materials Research Express, 2019, 6, 095335.	0.8	21
35	Toughening of bio-PE upon addition of PCL and PEgAA. REM: International Engineering Journal, 2019, 72, 469-478.	0.2	10
36	Clever use of PCL as kinetic controller in PBT/PCL blends. Materials Research Express, 2019, 6, 115313.	0.8	2

#	Article	IF	CITATIONS
37	Tailoring performance of PP/HIPS/SEBS through blending design. Materials Research Express, 2019, 6, 115321.	0.8	19
38	Reactive compatilization of PCL/WP upon addition of PCL-MA. Smart option for recycling industry. Materials Research Express, 2019, 6, 125317.	0.8	22
39	HDPE/Chitosan Composites Modified with PE-g-MA. Thermal, Morphological and Antibacterial Analysis. Polymers, 2019, 11, 1559.	2.0	16
40	Heterophasic polypropylene and wood flour composites: processing and properties. Materials Research Express, 2019, 6, 085321.	0.8	7
41	Impact of the natural filler babassu on the processing and properties of PBAT/PHB films. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105472.	3.8	39
42	Development of Green Composites Based on Polypropylene and Corncob Agricultural Residue. Journal of Polymers and the Environment, 2019, 27, 1677-1685.	2.4	16
43	Optimization of Epoxy Resin: An Investigation of Eggshell as a Synergic Filler. Materials, 2019, 12, 1489.	1.3	17
44	Tayloring PS/PCL blends: characteristics of processing and properties. REM: International Engineering Journal, 2019, 72, 87-95.	0.2	6
45	The effect of microcrystalline cellulose on poly(propylene) crystallization. An investigation of nonisothermal crystallization kinetics. Materials Research Express, 2019, 6, 065313.	0.8	3
46	Tailoring PS/PP _{recycled} blends compatibilized with SEBS. Evaluation of rheological, mechanical, thermomechanical and morphological characters. Materials Research Express, 2019, 6, 075316.	0.8	21
47	Grafting maleic anhydride onto polycaprolactone: influence of processing. Materials Research Express, 2019, 6, 055315.	0.8	14
48	Reactive compatibilization as a proper tool to improve PA6 toughness. Materials Research Express, 2019, 6, 125367.	0.8	15
49	Tailoring PBAT/PLA/Babassu films for suitability of agriculture mulch application. Journal of Natural Fibers, 2019, 16, 933-943.	1.7	51
50	Biodegradable Compounds of Poly (ƕCaprolactone)/Montmorillonite Clays. Materials Research, 2019, 22, .	0.6	7
51	Properties and Morphology of Polypropylene/Big Bags Compounds. Materials Research, 2019, 22, .	0.6	5
52	Crystallization kinetics of poly (butylene adipate terephthalate) in biocomposite with coconut fiber. Revista Materia, 2019, 24, .	0.1	2
53	Aplicação de método estatÃstico no estudo da influência do peróxido de hidrogênio e do borohidreto de sódio na sÃntese de nanoparticulas de prata (AGNPS). Revista Materia, 2019, 24, .	0.1	1
54	Nonisothermal crystallization studies of PBT/ZnO compounds. Journal of Thermal Analysis and Calorimetry, 2018, 131, 2569-2577.	2.0	6

#	Article	IF	CITATIONS
55	Melting and crystallization of PHB/ZnO compounds. Journal of Thermal Analysis and Calorimetry, 2018, 132, 571-580.	2.0	12
56	Efeito das variÃįveis reacionais na sÃntese de um polÃmero biodegradÃįvel funcionalizado: PCL-g-MA. Revista Materia, 2018, 23, .	0.1	6
57	Photodegradation Mechanisms on Poly(Î μ -caprolactone) (PCL). Materials Research, 2018, 21, .	0.6	29
58	PCL/ZnO Bio-friendly Films as Food Packaging Material.Thermal and morphological analysis. Revista Materia, 2018, 23, .	0.1	4
59	Effect of Alkaline and Hot Water Treatments on the Structure and Morphology of Piassava Fibers. Materials Research, 2018, 21, .	0.6	45
60	Effect of heat cycling on melting and crystallization of PHB/TiO2 compounds. Polimeros, 2018, 28, 161-168.	0.2	13
61	Moisture-mediated self-healing kinetics and molecular dynamics in modified polyurethane urea polymers. Polymer, 2018, 151, 125-135.	1.8	15
62	Effect of Babassu Natural Filler on PBAT/PHB Biodegradable Blends: An Investigation of Thermal, Mechanical, and Morphological Behavior. Materials, 2018, 11, 820.	1.3	30
63	The Influence of Clay Reinforcement on the Properties of Recycled Polymer Foams. Minerals, Metals and Materials Series, 2018, , 703-712.	0.3	Ο
64	Rheological properties of HDPE/chitosan composites modified with PE- <i>g</i> -MA. Journal of Materials Research, 2017, 32, 775-787.	1.2	12
65	Processing and Properties of PCL/Cotton Linter Compounds. Materials Research, 2017, 20, 317-325.	0.6	23
66	Comparative study of the effect of TiO2 and ZnO on the crystallization of PHB. Revista Materia, 2017, 22, .	0.1	8
67	PHB/Bentonite Compounds. Effect of Clay Modification and Thermal Aging on Properties. Materials Research, 2017, 20, 1503-1510.	0.6	6
68	Comportamento reológico do Bio-PE e do PCL na presença do PEgAA e PEgMA. Revista Materia, 2017, 22, .	0.1	6
69	Photodegradation and Photostabilization of Poly(3-Hydroxybutyrate). Materials Research, 2016, 19, 759-764.	0.6	11
70	Hydrolytic and Thermal Degradation of PCL and PCL/Bentonite Compounds. Materials Research, 2016, 19, 618-627.	0.6	25
71	Crystallization of PHB/Carbon black compounds. Effect of heating and cooling cycles. AIP Conference Proceedings, 2016, , .	0.3	2
72	Kinetic analysis of crystallization in PHB/Carbon black compounds. Mo model. AIP Conference Proceedings, 2016, , .	0.3	1

5

#	Article	IF	CITATIONS
73	Nonisothermal melt and cold crystallization kinetics of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate)/carbon black compounds. Evaluation of Pseudo-Avrami, Ozawa, and Mo models. Journal of Materials Research, 2016, 31, 729-739.	1.2	25
74	Effect of Hydrolytic Degradation on Mechanical Properties of PCL. Materials Science Forum, 2016, 869, 342-345.	0.3	3
75	Nonisothermal melt crystallization of PHB/babassu compounds. Journal of Thermal Analysis and Calorimetry, 2016, 126, 755-769.	2.0	26
76	Non-isothermal cold crystallization kinetics of poly(3-hydoxybutyrate) filled with zinc oxide. Thermochimica Acta, 2016, 637, 74-81.	1.2	22
77	Model-free non-isothermal crystallization kinetics of poly(3-hydoxybutyrate) filled with carbon black. Polymer Testing, 2016, 50, 241-246.	2.3	12
78	Melting and crystallization of poly(3-hydroxybutyrate)/carbon black compounds. Effect of heating and cooling cycles on phase transition. Journal of Materials Research, 2015, 30, 3211-3226.	1.2	37
79	The Effect of Polystyrene on the Crystallization of Poly(3-hydroxybutyrate). Materials Research, 2015, 18, 235-239.	0.6	5
80	Environmental Stress Cracking of Poly(3-hydroxibutyrate) Under Contact with Sodium Hydroxide. Materials Research, 2015, 18, 258-266.	0.6	7
81	Melting and crystallization of poly(3-hydroxybutyrate): effect of heating/cooling rates on phase transformation. Polimeros, 2015, 25, 296-304.	0.2	41
82	Complex cold crystallisation peaks in PET/PS blends. Polymer Testing, 2015, 41, 26-32.	2.3	18
83	Effect of polystyrene on poly(ethylene terephthalate) crystallization. Materials Research, 2014, 17, 1620-1627.	0.6	13
84	On the Kissinger equation and the estimate of activation energies for non-isothermal cold crystallization of PET. Polymer Testing, 2014, 40, 33-38.	2.3	79
85	The melting behaviour of poly(3-hydroxybutyrate) by DSC. Reproducibility study. Polymer Testing, 2013, 32, 215-220.	2.3	48
86	Efeito da adição de PHB na cristalização a frio do PET. Polimeros, 2012, 22, 111-116.	0.2	2
87	Effect of styreneâ€ <i>co</i> â€acrylonitrile on cold crystallization and mechanical properties of poly(ethylene terephthalate). Journal of Applied Polymer Science, 2012, 125, 2701-2710.	1.3	5
88	Nonisothermal cold crystallization of poly(ethylene terephthalate). Journal of Materials Research, 2011, 26, 1107-1115.	1.2	27
89	Nonâ€isothermal cold crystallization kinetics and morphology of PET + SAN blends. Journal of Applied Polymer Science, 2010, 116, 1077-1087.	1.3	3

Antinucleating action of polystyrene on the isothermal cold crystallization of poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td 1.3

#	Article	IF	CITATIONS
91	Redução da velocidade de cristalização a frio do PET na presença de poliestireno. Polimeros, 2007, 17, 113-122.	0.2	11
92	The kinetics of isothermal cold crystallization and tensile properties of poly(ethylene terephthalate). Journal of Materials Science, 2005, 40, 6099-6104.	1.7	75
93	Disclosing the complex crystallization of PBAT/PLA/Babassu biocompounds through MDSC analysis. Journal of Thermal Analysis and Calorimetry, 0, , 1.	2.0	1
94	Curing and morphology approaches of polyurethane/poly(ethylene glycol) foam upon poly(lactic acid) addition. Polymers for Advanced Technologies, 0, , .	1.6	3
95	Tuning the performance of <scp>PA6</scp> / <scp>EPDMâ€MA</scp> nanocomposites reinforced with Ni _{0.} <scp> ₅ Zn ₀ </scp> _. <scp> ₅ Fe ₂ O ₄ </scp> . Effect of the mixing protocol on mechanical,. Polymer Composites. 0	2.3	5
96	Thermal degradation kinetics of industrial batch crosslinked polyethylene. Journal of Applied Polymer Science, 0, , .	1.3	0