Kailong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4102417/publications.pdf

Version: 2024-02-01

156536 169272 5,430 62 32 56 citations h-index g-index papers 69 69 69 2928 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Comparative study of energy management in parallel hybrid electric vehicles considering battery ageing. Energy, 2023, 264, 123219.	4.5	13
2	Lithium-lon Battery Calendar Health Prognostics Based on Knowledge-Data-Driven Attention. IEEE Transactions on Industrial Electronics, 2023, 70, 407-417.	5.2	17
3	Electrochemical-Theory-Guided Modeling of the Conditional Generative Adversarial Network for Battery Calendar Aging Forecast. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11, 67-77.	3.7	25
4	Co-Estimation of State-of-Charge and State-of- Health for Lithium-Ion Batteries Using an Enhanced Electrochemical Model. IEEE Transactions on Industrial Electronics, 2022, 69, 2684-2696.	5.2	100
5	A Balancing Current Ratio Based State-of-Health Estimation Solution for Lithium-lon Battery Pack. IEEE Transactions on Industrial Electronics, 2022, 69, 8055-8065.	5.2	28
6	RUBoost-Based Ensemble Machine Learning for Electrode Quality Classification in Li-ion Battery Manufacturing. IEEE/ASME Transactions on Mechatronics, 2022, 27, 2474-2483.	3.7	23
7	Future Ageing Trajectory Prediction for Lithium-Ion Battery Considering the Knee Point Effect. IEEE Transactions on Energy Conversion, 2022, 37, 1282-1291.	3.7	38
8	Quantifying key factors for optimised manufacturing of Li-ion battery anode and cathode via artificial intelligence. Energy and Al, 2022, 7, 100129.	5.8	32
9	A review on second-life of Li-ion batteries: prospects, challenges, and issues. Energy, 2022, 241, 122881.	4.5	192
10	Data-Based Interpretable Modeling for Property Forecasting and Sensitivity Analysis of Li-ion Battery Electrode. Automotive Innovation, 2022, 5, 121-133.	3.1	13
11	A Transferred Recurrent Neural Network for Battery Calendar Health Prognostics of Energy-Transportation Systems. IEEE Transactions on Industrial Informatics, 2022, 18, 8172-8181.	7.2	28
12	Towards Long Lifetime Battery: Al-Based Manufacturing and Management. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 1139-1165.	8.5	111
13	Interpretable machine learning for battery capacities prediction and coating parameters analysis. Control Engineering Practice, 2022, 124, 105202.	3.2	38
14	Electrochemical modeling and parameterization towards control-oriented management of lithium-ion batteries. Control Engineering Practice, 2022, 124, 105176.	3.2	71
15	Self-Attention-Based Machine Theory of Mind for Electric Vehicle Charging Demand Forecast. IEEE Transactions on Industrial Informatics, 2022, 18, 8191-8202.	7.2	8
16	A Data-Driven Approach With Uncertainty Quantification for Predicting Future Capacities and Remaining Useful Life of Lithium-ion Battery. IEEE Transactions on Industrial Electronics, 2021, 68, 3170-3180.	5.2	373
17	Mass load prediction for lithium-ion battery electrode clean production: A machine learning approach. Journal of Cleaner Production, 2021, 289, 125159.	4.6	73
18	A compact and optimized neural network approach for battery state-of-charge estimation of energy storage system. Energy, 2021, 219, 119529.	4.5	66

#	Article	IF	CITATIONS
19	Feature Analyses and Modeling of Lithium-Ion Battery Manufacturing Based on Random Forest Classification. IEEE/ASME Transactions on Mechatronics, 2021, 26, 2944-2955.	3.7	103
20	A Particle Filter and Long Short-Term Memory Fusion Technique for Lithium-Ion Battery Remaining Useful Life Prediction. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2021, 143, .	0.9	22
21	Recovering large-scale battery aging dataset with machine learning. Patterns, 2021, 2, 100302.	3.1	71
22	Quantile forecast of renewable energy generation based on Indicator Gradient Descent and deep residual BiLSTM. Control Engineering Practice, 2021, 114, 104863.	3.2	18
23	Comprehensive study and improvement of experimental methods for obtaining referenced battery state-of-power. Journal of Power Sources, 2021, 512, 230462.	4.0	14
24	Classifications of Lithium-Ion Battery Electrode Property Based on Support Vector Machine with Various Kernels. Communications in Computer and Information Science, 2021, , 23-34.	0.4	3
25	Machine learning for optimised and clean Li-ion battery manufacturing: Revealing the dependency between electrode and cell characteristics. Journal of Cleaner Production, 2021, 324, 129272.	4.6	28
26	Interpretable Sensitivity Analysis and Electrode Porosity Classification for Li-ion Battery Smart Manufacturing. , $2021, , .$		0
27	A Sine-Wave Heating Circuit for Automotive Battery Self-Heating at Subzero Temperatures. IEEE Transactions on Industrial Informatics, 2020, 16, 3355-3365.	7.2	65
28	Gaussian Process Regression With Automatic Relevance Determination Kernel for Calendar Aging Prediction of Lithium-Ion Batteries. IEEE Transactions on Industrial Informatics, 2020, 16, 3767-3777.	7.2	233
29	A Compact Resonant Switched-Capacitor Heater for Lithium-Ion Battery Self-Heating at Low Temperatures. IEEE Transactions on Power Electronics, 2020, 35, 7134-7144.	5.4	68
30	Automotive Battery Equalizers Based on Joint Switched-Capacitor and Buck-Boost Converters. IEEE Transactions on Vehicular Technology, 2020, 69, 12716-12724.	3.9	56
31	Battery-Involved Energy Management for Hybrid Electric Bus Based on Expert-Assistance Deep Deterministic Policy Gradient Algorithm. IEEE Transactions on Vehicular Technology, 2020, 69, 12786-12796.	3.9	132
32	Advanced Fault Diagnosis for Lithium-Ion Battery Systems: A Review of Fault Mechanisms, Fault Features, and Diagnosis Procedures. IEEE Industrial Electronics Magazine, 2020, 14, 65-91.	2.3	260
33	Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter. Applied Energy, 2020, 280, 115895.	5.1	46
34	An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries. Renewable and Sustainable Energy Reviews, 2020, 131, 110017.	8.2	80
35	An improved resistance-based thermal model for prismatic lithium-ion battery charging. Applied Thermal Engineering, 2020, 180, 115794.	3.0	24
36	Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data – Part A: Storage operation. Journal of Energy Storage, 2020, 30, 101409.	3.9	24

#	Article	IF	Citations
37	Model Migration Neural Network for Predicting Battery Aging Trajectories. IEEE Transactions on Transportation Electrification, 2020, 6, 363-374.	5.3	127
38	A Practical and Comprehensive Evaluation Method for Series-Connected Battery Pack Models. IEEE Transactions on Transportation Electrification, 2020, 6, 391-416.	5.3	27
39	Co-estimation of lithium-ion battery state of charge and state of temperature based on a hybrid electrochemical-thermal-neural-network model. Journal of Power Sources, 2020, 455, 227935.	4.0	215
40	Optimal Charging Control for Lithium-Ion Battery Packs: A Distributed Average Tracking Approach. IEEE Transactions on Industrial Informatics, 2020, 16, 3430-3438.	7.2	96
41	A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting. Neurocomputing, 2020, 397, 415-421.	3.5	88
42	Light-weighted Battery State of Charge Estimation based on the Sigma-delta Technique. IFAC-PapersOnLine, 2020, 53, 12446-12451.	0.5	2
43	State estimation for advanced battery management: Key challenges and future trends. Renewable and Sustainable Energy Reviews, 2019, 114, 109334.	8.2	448
44	Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renewable and Sustainable Energy Reviews, 2019, 113, 109254.	8.2	599
45	Modified Gaussian Process Regression Models for Cyclic Capacity Prediction of Lithium-lon Batteries. IEEE Transactions on Transportation Electrification, 2019, 5, 1225-1236.	5.3	232
46	Wireless battery charging control for electric vehicles: a userâ€involved approach. IET Power Electronics, 2019, 12, 2688-2696.	1.5	8
47	Real-time aging trajectory prediction using a base model-oriented gradient-correction particle filter for Lithium-ion batteries. Journal of Power Sources, 2019, 440, 227118.	4.0	55
48	Lithium-ion battery charging management considering economic costs of electrical energy loss and battery degradation. Energy Conversion and Management, 2019, 195, 167-179.	4.4	169
49	A novel binary/real-valued pigeon-inspired optimization for economic/environment unit commitment with renewables and plug-in vehicles. Science China Information Sciences, 2019, 62, 1.	2.7	8
50	A brief review on key technologies in the battery management system of electric vehicles. Frontiers of Mechanical Engineering, 2019, 14, 47-64.	2.5	357
51	Multi-objective optimization of charging patterns for lithium-ion battery management. Energy Conversion and Management, 2018, 159, 151-162.	4.4	72
52	Data-Driven Hybrid Internal Temperature Estimation Approach for Battery Thermal Management. Complexity, 2018, 2018, 1-15.	0.9	28
53	Charging Pattern Optimization for Lithium-Ion Batteries With an Electrothermal-Aging Model. IEEE Transactions on Industrial Informatics, 2018, 14, 5463-5474.	7.2	186
54	Constrained generalized predictive control of battery charging process based on a coupled thermoelectric model. Journal of Power Sources, 2017, 347, 145-158.	4.0	103

#	Article	lF	Citations
55	An advanced Lithium-ion battery optimal charging strategy based on a coupled thermoelectric model. Electrochimica Acta, 2017, 225, 330-344.	2.6	79
56	Optimal Battery Charging Strategy Based on Complex System Optimization. Communications in Computer and Information Science, 2017, , 371-378.	0.4	4
57	Heuristic Based Terminal Iterative Learning Control of ISBM Reheating Processes. Communications in Computer and Information Science, 2017, , 262-271.	0.4	0
58	Control of Organic Rankine Cycle for waste heat recovery based on an optimized predictive model., 2017,,.		0
59	Compact modelling of Organic Rankine Cycle for waste heat recovery. , 2016, , .		2
60	Modeling of Organic Rankine Cycle for waste heat recovery using RBF neural networks. , 2016, , .		2
61	Battery optimal charging strategy based on a coupled thermoelectric model. , 2016, , .		9
62	A novel hybrid data-driven method for li-ion battery internal temperature estimation. , 2016, , .		11