
Martin D Rees

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4102355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Myeloperoxidase: A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. , 2021, 221, 107711.		38
2	Polyamine-Conjugated Nitroxides Are Efficacious Inhibitors of Oxidative Reactions Catalyzed by Endothelial-Localized Myeloperoxidase. Chemical Research in Toxicology, 2021, 34, 1681-1692.	3.3	3
3	Regulation of the nitric oxide oxidase activity of myeloperoxidase by pharmacological agents. Biochemical Pharmacology, 2017, 135, 90-115.	4.4	17
4	Using Cell-substrate Impedance and Live Cell Imaging to Measure Real-time Changes in Cellular Adhesion and De-adhesion Induced by Matrix Modification. Journal of Visualized Experiments, 2015, , .	0.3	2
5	Mechanism and regulation of peroxidase-catalyzed nitric oxide consumption in physiological fluids: Critical protective actions of ascorbate and thiocyanate. Free Radical Biology and Medicine, 2014, 72, 91-103.	2.9	15
6	Human Indoleamine 2,3-Dioxygenase Is a Catalyst of Physiological Heme Peroxidase Reactions. Journal of Biological Chemistry, 2013, 288, 1548-1567.	3.4	48
7	Targeted subendothelial matrix oxidation by myeloperoxidase triggers myosin II-dependent de-adhesion and alters signaling in endothelial cells. Free Radical Biology and Medicine, 2012, 53, 2344-2356.	2.9	30
8	Urate as a Physiological Substrate for Myeloperoxidase. Journal of Biological Chemistry, 2011, 286, 12901-12911.	3.4	109
9	Acetaminophen (paracetamol) inhibits myeloperoxidase-catalyzed oxidant production and biological damage at therapeutically achievable concentrations. Biochemical Pharmacology, 2010, 79, 1156-1164.	4.4	59
10	Peroxynitrite modifies the structure and function of the extracellular matrix proteoglycan perlecan by reaction with both the protein core and the heparan sulfate chains. Free Radical Biology and Medicine, 2010, 49, 282-293.	2.9	41
11	Heparan Sulfate-Dependent Signaling of Fibroblast Growth Factor 18 by Chondrocyte-Derived Perlecan. Biochemistry, 2010, 49, 5524-5532.	2.5	92
12	Myeloperoxidase-derived oxidants selectively disrupt the protein core of the heparan sulfate proteoglycan perlecan. Matrix Biology, 2010, 29, 63-73.	3.6	54
13	Inhibition of myeloperoxidase-mediated hypochlorous acid production by nitroxides. Biochemical Journal, 2009, 421, 79-86.	3.7	71
14	Recombinant heparan sulfate for use in tissue engineering applications. Journal of Chemical Technology and Biotechnology, 2008, 83, 496-504.	3.2	8
15	Mammalian Heme Peroxidases: From Molecular Mechanisms to Health Implications. Antioxidants and Redox Signaling, 2008, 10, 1199-1234.	5.4	490
16	Oxidative damage to extracellular matrix and its role in human pathologies. Free Radical Biology and Medicine, 2008, 44, 1973-2001.	2.9	167
17	Degradation of extracellular matrix and its components by hypobromous acid. Biochemical Journal, 2007, 401, 587-596.	3.7	38
18	Heparan Sulfate Degradation via Reductive Homolysis of Its N-Chloro Derivatives. Journal of the American Chemical Society, 2006, 128, 3085-3097.	13.7	44

MARTIN D REES

#	Article	IF	CITATIONS
19	Oxidation of heparan sulphate by hypochlorite: role of N-chloro derivatives and dichloramine-dependent fragmentation. Biochemical Journal, 2005, 391, 125-134.	3.7	53
20	Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulphates. Biochemical Journal, 2004, 381, 175-184.	3.7	92
21	Hypochlorite-Mediated Fragmentation of Hyaluronan, Chondroitin Sulfates, and RelatedN-Acetyl Glycosamines:Â Evidence for Chloramide Intermediates, Free Radical Transfer Reactions, and Site-Specific Fragmentation. Journal of the American Chemical Society, 2003, 125, 13719-13733.	13.7	86
22	Superoxide radicals can act synergistically with hypochlorite to induce damage to proteins. FEBS Letters, 2002, 510, 41-44.	2.8	42