List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4102348/publications.pdf Version: 2024-02-01

XINOIAO LIA

#	Article	lF	CITATIONS
1	Nanostructured materials for applications in drug delivery and tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 241-268.	1.9	897
2	Controlled Degradation and Mechanical Behavior of Photopolymerized Hyaluronic Acid Networks. Biomacromolecules, 2005, 6, 386-391.	2.6	669
3	Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomaterialia, 2014, 10, 1558-1570.	4.1	490
4	Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter, 2012, 8, 3280.	1.2	463
5	Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnology Advances, 2014, 32, 1256-1268.	6.0	375
6	Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. Biomaterials, 2009, 30, 6076-6085.	5.7	269
7	Hybrid Multicomponent Hydrogels for Tissue Engineering. Macromolecular Bioscience, 2009, 9, 140-156.	2.1	266
8	Hyaluronic Acid-Based Microgels and Microgel Networks for Vocal Fold Regeneration. Biomacromolecules, 2006, 7, 3336-3344.	2.6	221
9	A Route to Nanoscopic SiO2 Posts via Block Copolymer Templates. Advanced Materials, 2001, 13, 795-797.	11.1	178
10	Synthesis and Characterization of in Situ Cross-Linkable Hyaluronic Acid-Based Hydrogels with Potential Application for Vocal Fold Regeneration. Macromolecules, 2004, 37, 3239-3248.	2.2	173
11	Prolongation of sciatic nerve blockade by in situ cross-linked hyaluronic acid. Biomaterials, 2004, 25, 4797-4804.	5.7	170
12	Heparin-decorated, hyaluronic acid-based hydrogel particles for the controlled release of bone morphogenetic protein 2. Acta Biomaterialia, 2011, 7, 3050-3059.	4.1	125
13	Rapid Bioorthogonal Chemistry Turn-on through Enzymatic or Long Wavelength Photocatalytic Activation of Tetrazine Ligation. Journal of the American Chemical Society, 2016, 138, 5978-5983.	6.6	121
14	Tunable Mechanical Stability and Deformation Response of a Resilin-Based Elastomer. Biomacromolecules, 2011, 12, 2302-2310.	2.6	118
15	Recreating the tumor microenvironment in a bilayer, hyaluronic acid hydrogel construct for the growth of prostate cancer spheroids. Biomaterials, 2012, 33, 9049-9060.	5.7	117
16	Structural Analysis and Mechanical Characterization of Hyaluronic Acid-Based Doubly Cross-Linked Networks. Macromolecules, 2009, 42, 537-546.	2.2	112
17	Resilin-like polypeptide hydrogels engineered for versatile biological function. Soft Matter, 2013, 9, 665-673.	1.2	106
18	A hydrogel-based tumor model for the evaluation of nanoparticle-based cancer therapeutics. Biomaterials, 2014, 35, 3319-3330.	5.7	103

#	Article	IF	CITATIONS
19	Perlecan domain I-conjugated, hyaluronic acid-based hydrogel particles for enhanced chondrogenic differentiation via BMP-2 release. Biomaterials, 2009, 30, 6964-6975.	5.7	100
20	3D Matrices for Anti-Cancer Drug Testing and Development. Oncology Issues, 2010, 25, 20-25.	0.0	97
21	Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Biomaterials, 2011, 32, 2466-2478.	5.7	95
22	Implantable Three-Dimensional Salivary Spheroid Assemblies Demonstrate Fluid and Protein Secretory Responses to Neurotransmitters. Tissue Engineering - Part A, 2013, 19, 1610-1620.	1.6	88
23	Synthesis and Characterization of Elastinâ ^{••} Mimetic Hybrid Polymers with Multiblock, Alternating Molecular Architecture and Elastomeric Properties. Macromolecules, 2009, 42, 2532-2541.	2.2	78
24	Tissue engineering-based therapeutic strategies for vocal fold repair and regeneration. Biomaterials, 2016, 108, 91-110.	5.7	75
25	Primary Salivary Human Stem/Progenitor Cells Undergo Microenvironment-Driven Acinar-Like Differentiation in Hyaluronate Hydrogel Culture. Stem Cells Translational Medicine, 2017, 6, 110-120.	1.6	71
26	Controlling the Fibroblastic Differentiation of Mesenchymal Stem Cells Via the Combination of Fibrous Scaffolds and Connective Tissue Growth Factor. Tissue Engineering - Part A, 2011, 17, 2773-2785.	1.6	69
27	Mechano-responsive hydrogels crosslinked by block copolymer micelles. Soft Matter, 2012, 8, 10233.	1.2	68
28	Fabrication and characterization of cross-linkable hydrogel particles based on hyaluronic acid: potential application in vocal fold regeneration. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 223-243.	1.9	66
29	Injectable perlecan domain 1-hyaluronan microgels potentiate the cartilage repair effect of BMP2 in a murine model of early osteoarthritis. Biomedical Materials (Bristol), 2012, 7, 024109.	1.7	63
30	Dexamethasone-Loaded Block Copolymer Nanoparticles Induce Leukemia Cell Death and Enhance Therapeutic Efficacy: A Novel Application in Pediatric Nanomedicine. Molecular Pharmaceutics, 2013, 10, 2199-2210.	2.3	63
31	Poly(acrylic acid- <i>b</i> -styrene) Amphiphilic Multiblock Copolymers as Building Blocks for the Assembly of Discrete Nanoparticles. Macromolecules, 2011, 44, 1942-1951.	2.2	62
32	A novel in vivo model for evaluating functional restoration of a tissue-engineered salivary gland. Laryngoscope, 2014, 124, 456-461.	1.1	58
33	Interfacial Bioorthogonal Cross-Linking. ACS Macro Letters, 2014, 3, 727-731.	2.3	58
34	Growth of Silicon Oxide in Thin Film Block Copolymer Scaffolds. Advanced Materials, 2004, 16, 702-706.	11.1	57
35	Hyaluronan (HA) Interacting Proteins RHAMM and Hyaluronidase Impact Prostate Cancer Cell Behavior and Invadopodia Formation in 3D HA-Based Hydrogels. PLoS ONE, 2012, 7, e50075.	1.1	57
36	Perlecan Domain IV Peptide Stimulates Salivary Gland Cell Assembly <i>In Vitro</i> . Tissue Engineering - Part A, 2009, 15, 3309-3320.	1.6	56

#	Article	IF	CITATIONS
37	Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks. Soft Matter, 2010, 6, 5045.	1.2	52
38	Nylon surface modification. Part 1. Targeting the amide groups for selective introduction of reactive functionalities. Polymer, 2006, 47, 4916-4924.	1.8	51
39	Integrin-mediated adhesion and proliferation of human MSCs elicited by a hydroxyproline-lacking, collagen-like peptide. Biomaterials, 2011, 32, 6412-6424.	5.7	49
40	Effects of Matrix Composition, Microstructure, and Viscoelasticity on the Behaviors of Vocal Fold Fibroblasts Cultured in Three-Dimensional Hydrogel Networks. Tissue Engineering - Part A, 2010, 16, 1247-1261.	1.6	48
41	Enabling <i>In Vivo</i> Photocatalytic Activation of Rapid Bioorthogonal Chemistry by Repurposing Silicon-Rhodamine Fluorophores as Cytocompatible Far-Red Photocatalysts. Journal of the American Chemical Society, 2021, 143, 10793-10803.	6.6	47
42	Hybrid, elastomeric hydrogels crosslinked by multifunctional block copolymer micelles. Soft Matter, 2010, 6, 5293.	1.2	44
43	Hyaluronic Acid-Based Hydrogels Containing Covalently Integrated Drug Depots: Implication for Controlling Inflammation in Mechanically Stressed Tissues. Biomacromolecules, 2013, 14, 3808-3819.	2.6	44
44	Biomaterials-based strategies for salivary gland tissue regeneration. Biomaterials Science, 2016, 4, 592-604.	2.6	42
45	Meterâ€Long Multiblock Copolymer Microfibers Via Interfacial Bioorthogonal Polymerization. Advanced Materials, 2015, 27, 2783-2790.	11.1	41
46	Recombinant Resilinâ€Based Bioelastomers for Regenerative Medicine Applications. Advanced Healthcare Materials, 2016, 5, 266-275.	3.9	41
47	Injectable hyaluronic acidâ€dextran hydrogels and effects of implantation in ferret vocal fold. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 93B, 386-393.	1.6	40
48	Modular and orthogonal synthesis of hybrid polymers and networks. Chemical Communications, 2015, 51, 5218-5237.	2.2	40
49	CD19-Targeted Nanodelivery of Doxorubicin Enhances Therapeutic Efficacy in B-Cell Acute Lymphoblastic Leukemia. Molecular Pharmaceutics, 2015, 12, 2101-2111.	2.3	40
50	Tuning Hydrogel Properties to Promote the Assembly of Salivary Gland Spheroids in 3D. ACS Biomaterials Science and Engineering, 2016, 2, 2217-2230.	2.6	37
51	Foldable and Cytocompatible Sol-gel TiO2 Photonics. Scientific Reports, 2015, 5, 13832.	1.6	36
52	Biomimetic Hydrogels Incorporating Polymeric Cell-Adhesive Peptide To Promote the 3D Assembly of Tumoroids. Biomacromolecules, 2016, 17, 3750-3760.	2.6	36
53	Tuning the Properties of Elastin Mimetic Hybrid Copolymers via a Modular Polymerization Method. Biomacromolecules, 2012, 13, 1774-1786.	2.6	32
54	Modulating the Behaviors of Mesenchymal Stem Cells Via the Combination of High-Frequency Vibratory Stimulations and Fibrous Scaffolds. Tissue Engineering - Part A, 2013, 19, 1862-1878.	1.6	32

#	Article	IF	CITATIONS
55	Core–shell patterning of synthetic hydrogels <i>via</i> interfacial bioorthogonal chemistry for spatial control of stem cell behavior. Chemical Science, 2018, 9, 5394-5404.	3.7	31
56	Dynamic Vibration Cooperates with Connective Tissue Growth Factor to Modulate Stem Cell Behaviors. Tissue Engineering - Part A, 2014, 20, 1922-1934.	1.6	30
57	Nylon Surface Modification:Â 2. Nylon-Supported Composite Films. Langmuir, 2006, 22, 1646-1651.	1.6	29
58	Buried Interface Modification Using Supercritical Carbon Dioxide. Langmuir, 2002, 18, 683-687.	1.6	28
59	Assembly Properties of an Alanineâ€Rich, Lysine ontaining Peptide and the Formation of Peptide/Polymer Hybrid Hydrogels. Macromolecular Chemistry and Physics, 2011, 212, 229-239.	1.1	28
60	Physiologically Based Pharmacokinetic Modeling of Fluorescently Labeled Block Copolymer Nanoparticles for Controlled Drug Delivery in Leukemia Therapy. CPT: Pharmacometrics and Systems Pharmacology, 2015, 4, 167-174.	1.3	27
61	Design and characterization of a dynamic vibrational culture system. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 213-225.	1.3	26
62	Bottom-up assembly of salivary gland microtissues for assessing myoepithelial cell function. Biomaterials, 2017, 142, 124-135.	5.7	26
63	Nanoparticle formation from hybrid, multiblock copolymers of poly(acrylic acid) and a VPGVG peptide. Soft Matter, 2013, 9, 1589-1599.	1.2	25
64	Rapid Bioorthogonal Chemistry Enables in Situ Modulation of the Stem Cell Behavior in 3D without External Triggers. ACS Applied Materials & Interfaces, 2018, 10, 26016-26027.	4.0	25
65	High Frequency Measurements of Viscoelastic Properties of Hydrogels for Vocal Fold Regeneration. Experimental Mechanics, 2009, 49, 235-246.	1.1	24
66	High-Frequency Viscoelastic Shear Properties of Vocal Fold Tissues: Implications for Vocal Fold Tissue Engineering. Tissue Engineering - Part A, 2012, 18, 2008-2019.	1.6	23
67	Responsive hybrid (poly)peptide–polymer conjugates. Journal of Materials Chemistry B, 2017, 5, 8274-8288.	2.9	23
68	Top-down mass spectrometry of hybrid materials with hydrophobic peptide and hydrophilic or hydrophobic polymer blocks. Analyst, The, 2015, 140, 7550-7564.	1.7	22
69	Regulation of Epithelial-to-Mesenchymal Transition Using Biomimetic Fibrous Scaffolds. ACS Applied Materials & Interfaces, 2016, 8, 17915-17926.	4.0	21
70	Spatial Patterning of Molecular Cues and Vascular Cells in Fully Integrated Hydrogel Channels via Interfacial Bioorthogonal Cross-Linking. ACS Applied Materials & Interfaces, 2019, 11, 16402-16411.	4.0	19
71	Oriented polycrystalline mesoporous CeO2 with enhanced pore integrity. Microporous and Mesoporous Materials, 2008, 115, 247-252.	2.2	17
72	Poly(ε-caprolactone)-based copolymers bearing pendant cyclic ketals and reactive acrylates for the fabrication of photocrosslinked elastomers. Acta Biomaterialia, 2013, 9, 8232-8244.	4.1	16

#	Article	IF	CITATIONS
73	Chemical synthesis of biomimetic hydrogels for tissue engineering. Polymer International, 2017, 66, 1787-1799.	1.6	16
74	Cellular interactions with hydrogel microfibers synthesized via interfacial tetrazine ligation. Biomaterials, 2018, 180, 24-35.	5.7	15
75	Biomaterial-based strategies for the engineering of mechanically active soft tissues. MRS Communications, 2012, 2, 31-39.	0.8	14
76	CK2.1, a bone morphogenetic protein receptor type Ia mimetic peptide, repairs cartilage in mice with destabilized medial meniscus. Stem Cell Research and Therapy, 2017, 8, 82.	2.4	14
77	Induction of Fibrogenic Phenotype in Human Mesenchymal Stem Cells by Connective Tissue Growth Factor in a Hydrogel Model of Soft Connective Tissue. ACS Biomaterials Science and Engineering, 2019, 5, 4531-4541.	2.6	14
78	Controlled Growth of Silicon Dioxide from "Nanoholes―in Silicon-Supported Tris(trimethylsiloxy)silyl Monolayers:Â Rational Control of Surface Roughness at the Nanometer Length Scale. Langmuir, 2003, 19, 2449-2457.	1.6	13
79	Sequence and Conformational Analysis of Peptide–Polymer Bioconjugates by Multidimensional Mass Spectrometry. Biomacromolecules, 2018, 19, 1498-1507.	2.6	13
80	Biocompatibility and Viscoelastic Properties of Injectable Resilin-Like Polypeptide and Hyaluronan Hybrid Hydrogels in Rabbit Vocal Folds. Regenerative Engineering and Translational Medicine, 2019, 5, 373-386.	1.6	13
81	RGDSP-Decorated Hyaluronate Hydrogels Facilitate Rapid 3D Expansion of Amylase-Expressing Salivary Gland Progenitor Cells. ACS Biomaterials Science and Engineering, 2021, 7, 5749-5761.	2.6	13
82	Predicting unfolding thermodynamics and stable intermediates for alanine-rich helical peptides with the aid of coarse-grained molecular simulation. Biophysical Chemistry, 2016, 217, 8-19.	1.5	12
83	Understanding aging in chalcogenide glass thin films using precision resonant cavity refractometry. Optical Materials Express, 2019, 9, 2252.	1.6	12
84	Copolymerization of ethyl ?-(hydroxymethyl)acrylate with maleimide and characterization of the resulting copolymer. Journal of Polymer Science Part A, 1998, 36, 1291-1299.	2.5	11
85	Amphiphilic Block Co-polyesters Bearing Pendant Cyclic Ketal Groups as Nanocarriers for Controlled Release of Camptothecin. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 1275-1298.	1.9	11
86	Aggregation of poly(acrylic acid)-containing elastin-mimetic copolymers. Soft Matter, 2015, 11, 1839-1850.	1.2	10
87	3D integrated photonics platform with deterministic geometry control. Photonics Research, 2020, 8, 194.	3.4	10
88	Improving Tumorâ€ŧoâ€Background Contrast through Hydrophilic Tetrazines: The Construction of 18 F‣abeled PET Agents Targeting Nonsmall Cell Lung Carcinoma. Chemistry - A European Journal, 2020, 26, 4690-4694.	1.7	9
89	Hydrogels in Tissue Engineering. , 2011, , 9-46.		8
90	Construction and Characterization of a Novel Vocal Fold Bioreactor. Journal of Visualized Experiments, 2014, , e51594.	0.2	8

#	Article	IF	CITATIONS
91	Association of Resting Heart Rate with Infrarenal Aortic Diameter: A Cross Sectional Study in Chinese Hypertensive Adults. European Journal of Vascular and Endovascular Surgery, 2015, 50, 714-721.	0.8	8
92	Hydrogel-Supported, Engineered Model of Vocal Fold Epithelium. ACS Biomaterials Science and Engineering, 2021, 7, 4305-4317.	2.6	8
93	Core–Shell Microfibers via Bioorthogonal Layer-by-Layer Assembly. ACS Macro Letters, 2020, 9, 1369-1375.	2.3	6
94	Regulation of Stem Cell Function in an Engineered Vocal Fold-Mimetic Environment. Regenerative Engineering and Translational Medicine, 2020, 6, 164-178.	1.6	4
95	Tunable Synthesis of Hydrogel Microfibers via Interfacial Tetrazine Ligation. Biomacromolecules, 2022, 23, 3017-3030.	2.6	4
96	Salivary Gland Tissue Engineering and Repair. , 2015, , 613-623.		2
97	Culture of Mesenchymal Stem Cells in a Hydrogel Model of Vocal Fold Lamina Propria. Regenerative Engineering and Translational Medicine, 2019, 5, 387-401.	1.6	2
98	Controlled Molecular Assembly of Tetrazine Derivatives on Surfaces. CCS Chemistry, 2022, 4, 162-172.	4.6	2
99	Regulation of neovasculogenesis in co-cultures of aortic adventitial fibroblasts and microvascular endothelial cells by cell-cell interactions and TGF-β/ALK5 signaling. PLoS ONE, 2020, 15, e0244243.	1.1	2
100	Vocal fold-mimetic environment for fibroblastic differentiation of mesenchymal stem cell. , 2012, , .		1
101	Tissue Engineering Strategies for Vocal Fold Repair and Regeneration. , 2012, , 253-284.		1
102	Regulation of Stem Cell Function in an Engineered Vocal Fold-Mimetic Environment. Regenerative Engineering and Translational Medicine, 2020, 6, 164-178.	1.6	1
103	Hyaluronic acid-based hydrogels as 3D matrices for in vitro tumor engineering. , 2012, , .		0
104	Leptin inhibitor as a novel therapeutic for osteoarthritis. , 2012, , .		0
105	Characterizing aggregate growth and morphology of alanine-rich polypeptides as a function of sequence chemistry and solution temperature from scattering, spectroscopy, and microscopy. Biophysical Chemistry, 2020, 267, 106481.	1.5	0
106	Hybrid hydrogels for use in vocal fold tissue engineering. FASEB Journal, 2009, 23, .	0.2	0
107	WE-C-BRB-09: Development of a GPU-Based Monte Carlo Dose Calculation Package for Proton Radiotherapy. Medical Physics, 2012, 39, 3945-3945.	1.6	0
108	SUâ€Eâ€Tâ€673: Recent Developments and Comprehensive Validations of a GPUâ€Based Proton Monte Carlo Simulation Package, GPMC. Medical Physics, 2015, 42, 3491-3491.	1.6	0