Yong-Ming Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4102275/publications.pdf

Version: 2024-02-01

132 4,711 35 60 papers citations h-index g-index

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	A Vaccine Based on the Receptor-Binding Domain of the Spike Protein Expressed in Glycoengineered Pichia pastoris Targeting SARS-CoV-2 Stimulates Neutralizing and Protective Antibody Responses. Engineering, 2022, 13, 107-115.	6.7	13
2	Pink1/Parkin-Mediated Mitophagy Regulated the Apoptosis of Dendritic Cells in Sepsis. Inflammation, 2022, 45, 1374-1387.	3.8	5
3	Eukaryotic ribosome quality control system: a potential therapeutic target for human diseases. International Journal of Biological Sciences, 2022, 18, 2497-2514.	6.4	5
4	Neutrophil membrane-mimicking nanodecoys with intrinsic anti-inflammatory properties alleviate sepsis-induced acute liver injury and lethality in a mouse endotoxemia model. Materials Today Bio, 2022, 14, 100244.	5.5	8
5	Advances in Immune Monitoring Approaches for Sepsis-Induced Immunosuppression. Frontiers in Immunology, 2022, 13 , .	4.8	24
6	Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles. Autophagy, 2021 , 17 , $385-401$.	9.1	195
7	Autocrine Regulation of Interleukin-3 in the Activity of Regulatory T Cells and its Effectiveness in the Pathophysiology of Sepsis. Journal of Infectious Diseases, 2021, 223, 893-904.	4.0	13
8	The current evidence for the treatment of sepsis with Xuebijing injection: Bioactive constituents, findings of clinical studies and potential mechanisms. Journal of Ethnopharmacology, 2021, 265, 113301.	4.1	40
9	Immunomodulatory property and its regulatory mechanism of double network hydrogel on dendritic cells. Journal of Biomedical Materials Research - Part A, 2021, 109, 1015-1026.	4.0	2
10	Predictive value of immune cell counts and neutrophil-to-lymphocyte ratio for 28-day mortality in patients with sepsis caused by intra-abdominal infection. Burns and Trauma, 2021, 9, tkaa040.	4.9	23
11	The Effect and Regulatory Mechanism of High Mobility Group Box-1 Protein on Immune Cells in Inflammatory Diseases. Cells, 2021, 10, 1044.	4.1	32
12	ER stress and its PERK branch enhance TCR-induced activation in regulatory T cells. Biochemical and Biophysical Research Communications, 2021, 563, 8-14.	2.1	8
13	Is oxygen therapy beneficial for normoxemic patients with acute heart failure? A propensity score matched study. Military Medical Research, 2021, 8, 38.	3.4	5
14	The Role and Regulatory Mechanism of Transcription Factor EB in Health and Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 667750.	3.7	23
15	Sestrin2 protects dendrite cells against ferroptosis induced by sepsis. Cell Death and Disease, 2021, 12, 834.	6.3	37
16	Combination therapy of thiamine, vitamin C and hydrocortisone in treating patients with sepsis and septic shock: a meta-analysis and trial sequential analysis. Burns and Trauma, 2021, 9, tkab040.	4.9	4
17	TNF- $\hat{l}\pm$ -induced protein 8-like 2 negatively regulates the immune function of dendritic cells by suppressing autophagy via the TAK1/JNK pathway in septic mice. Cell Death and Disease, 2021, 12, 1032.	6.3	12
18	Sestrin2 protects against lethal sepsis by suppressing the pyroptosis of dendritic cells. Cellular and Molecular Life Sciences, 2021, 78, 8209-8227.	5.4	22

#	Article	IF	Citations
19	Long-lasting neurobehavioral alterations in burn-injured mice resembling post-traumatic stress disorder in humans. Experimental Neurology, 2020, 323, 113084.	4.1	8
20	Assessment of melatonergics in prevention of delirium in critically ill patients. Medicine (United) Tj ETQq0 0 0 r	gBT /Overlo	ock ₃ 10 Tf 50 7
21	Diagnostic blood loss from phlebotomy and hospital acquired anemia in patients with severe burns. Burns, 2020, 46, 579-588.	1.9	3
22	Interleukinâ€38 protects against sepsis by augmenting immunosuppressive activity of CD4 ⁺ CD25 ⁺ regulatory T cells. Journal of Cellular and Molecular Medicine, 2020, 24, 2027-2039.	3.6	29
23	Lysosomal quality control of cell fate: a novel therapeutic target for human diseases. Cell Death and Disease, 2020, 11, 817.	6.3	63
24	Is haemoglobin below 7.0 g/dL an optimal trigger for allogenic red blood cell transfusion in patients admitted to intensive care units? A meta-analysis and systematic review. BMJ Open, 2020, 10 , e030854.	1.9	7
25	Comparison of clinical laboratory tests between bacterial sepsis and SARS-CoV-2-associated viral sepsis. Military Medical Research, 2020, 7, 36.	3.4	11
26	Thymosin $\hat{l}\pm 1$ therapy in critically ill patients with COVID-19: A multicenter retrospective cohort study. International Immunopharmacology, 2020, 88, 106873.	3.8	34
27	The Clinical Features and Prognostic Assessment of SARS-CoV-2 Infection-Induced Sepsis Among COVID-19 Patients in Shenzhen, China. Frontiers in Medicine, 2020, 7, 570853.	2.6	6
28	Effect of Interleukin- $36\hat{l}^2$ on Activating Autophagy of CD4+CD25+ Regulatory T cells and Its Immune Regulation in Sepsis. Journal of Infectious Diseases, 2020, 222, 1517-1530.	4.0	11
29	Plasma glucagon-like peptide 1 was associated with hospital-acquired infections and long-term mortality in burn patients. Surgery, 2020, 167, 1016-1022.	1.9	4
30	Clinical features and development of sepsis in patients infected with SARS-CoV-2: a retrospective analysis of 150 cases outside Wuhan, China. Intensive Care Medicine, 2020, 46, 1630-1633.	8.2	16
31	Recombinant human ulinastatin improves immune dysfunction of dendritic cells in septic mice by inhibiting endoplasmic reticulum stress-related apoptosis. International Immunopharmacology, 2020, 85, 106643.	3.8	7
32	Association between furosemide administration and outcomes in critically ill patients with acute kidney injury. Critical Care, 2020, 24, 75.	5.8	59
33	Sestrin2 protects dendritic cells against endoplasmic reticulum stress-related apoptosis induced by high mobility group box-1 protein. Cell Death and Disease, 2020, 11, 125.	6.3	29
34	Sepsis-associated encephalopathy: a vicious cycle of immunosuppression. Journal of Neuroinflammation, 2020, 17, 14.	7.2	130
35	Assessment of Melatonergics in Prevention of Delirium: A Systematic Review and Meta-Analysis. Frontiers in Neurology, 2020, 11, 198.	2.4	6
36	Better therapy for combat injury. Military Medical Research, 2019, 6, 23.	3.4	7

#	Article	IF	Citations
37	Inverse Correlation Between Plasma Sphingosine-1-Phosphate and Ceramide Concentrations in Septic Patients and Their Utility in Predicting Mortality. Shock, 2019, 51, 718-724.	2.1	17
38	Mdivi-1 Protects CD4+ T Cells against Apoptosis via Balancing Mitochondrial Fusion-Fission and Preventing the Induction of Endoplasmic Reticulum Stress in Sepsis. Mediators of Inflammation, 2019, 2019, 1-14.	3.0	15
39	Role of dendritic cells in the host response to biomaterials and their signaling pathways. Acta Biomaterialia, 2019, 94, 132-144.	8.3	37
40	Inhibition of Cerebral High-Mobility Group Box 1 Protein Attenuates Multiple Organ Damage and Improves T Cell-Mediated Immunity in Septic Rats. Mediators of Inflammation, 2019, 2019, 1-10.	3.0	10
41	Exendin-4 Exacerbates Burn-Induced Morbidity in Mice by Activation of the Sympathetic Nervous System. Mediators of Inflammation, 2019, 2019, 1-16.	3.0	3
42	Effect of TIPE1 on Immune Function of Dendritic Cells and Its Signaling Pathway in Septic Mice. Journal of Infectious Diseases, 2019, 220, 699-709.	4.0	13
43	Mitochondrial quality control mechanisms as potential therapeutic targets in sepsis-induced multiple organ failure. Journal of Molecular Medicine, 2019, 97, 451-462.	3.9	53
44	Electroacupuncture Improves the Survival Rate and Organ Function in a Rat Model of Hemorrhagic Shock. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-7.	1.2	4
45	Sestrin2: Its Potential Role and Regulatory Mechanism in Host Immune Response in Diseases. Frontiers in Immunology, 2019, 10, 2797.	4.8	49
46	XueBiJing Injection Versus Placebo for Critically Ill Patients With Severe Community-Acquired Pneumonia: A Randomized Controlled Trial. Critical Care Medicine, 2019, 47, e735-e743.	0.9	112
47	Recent advances in the biology of IL-1 family cytokines and their potential roles in development of sepsis. Cytokine and Growth Factor Reviews, 2019, 45, 24-34.	7.2	43
48	Tumor Necrosis Factor-α-Induced Protein 8-like 2 Downregulation Reduces CD4⪠T Lymphocyte Apoptosis in Mice with Thermal Injury. Medical Science Monitor, 2019, 25, 7547-7556.	1.1	7
49	Proinflammatory switch from Gî±s to Gî±i signaling by Glucagon-like peptide-1 receptor in murine splenic monocyte following burn injury. Inflammation Research, 2018, 67, 157-168.	4.0	9
50	Potential therapy strategy: targeting mitochondrial dysfunction in sepsis. Military Medical Research, 2018, 5, 41.	3.4	56
51	Role of the Ca2+-Calcineurin-Nuclear Factor of Activated T cell Pathway in Mitofusin-2-Mediated Immune Function of Jurkat Cells. Chinese Medical Journal, 2018, 131, 330-338.	2.3	4
52	Association between the T6459C point mutation of the mitochondrial ⟨scp⟩MT⟨/scp⟩â€⟨scp⟩CO⟨/scp⟩1 gene and susceptibility to sepsis among Chinese Han people. Journal of Cellular and Molecular Medicine, 2018, 22, 5257-5264.	3.6	11
53	Efficacy and safety of Xuebijing injection (a Chinese patent) for sepsis: A meta-analysis of randomized controlled trials. Journal of Ethnopharmacology, 2018, 224, 512-521.	4.1	59
54	Partial Depletion of Regulatory T Cells Enhances Host Inflammatory Response Against Acute Pseudomonas aeruginosa Infection After Sepsis. Inflammation, 2018, 41, 1780-1790.	3.8	18

#	Article	IF	Citations
55	Autophagy and proinflammatory cytokines: Interactions and clinical implications. Cytokine and Growth Factor Reviews, 2018, 43, 38-46.	7.2	118
56	Activation of Central Alpha 7 Nicotinic Acetylcholine Receptor Reverses Suppressed Immune Function of T Lymphocytes and Protects Against Sepsis Lethality. International Journal of Biological Sciences, 2018, 14, 748-759.	6.4	22
57	The Clinical Significance and Potential Role of C-Reactive Protein in Chronic Inflammatory and Neurodegenerative Diseases. Frontiers in Immunology, 2018, 9, 1302.	4.8	206
58	Human amnion-derived mesenchymal stem cells alleviate lung injury induced by white smoke inhalation in rats. Stem Cell Research and Therapy, 2018, 9, 101.	5.5	32
59	Tumor Necrosis Factor-α Induced Protein 8: Pathophysiology, Clinical Significance, and Regulatory Mechanism. International Journal of Biological Sciences, 2018, 14, 398-405.	6.4	30
60	TNF- $\hat{l}\pm$ mRNA is negatively regulated by microRNA-181a-5p in maturation of dendritic cells induced by high mobility group box-1 protein. Scientific Reports, 2017, 7, 12239.	3.3	45
61	The Protective Effect of Alpha 7 Nicotinic Acetylcholine Receptor Activation on Critical Illness and Its Mechanism. International Journal of Biological Sciences, 2017, 13, 46-56.	6.4	54
62	Autophagy: A Potential Therapeutic Target for Reversing Sepsis-Induced Immunosuppression. Frontiers in Immunology, 2017, 8, 1832.	4.8	45
63	Growth Arrest-Specific 6 Enhances the Suppressive Function of CD4 ⁺ CD25 ⁺ Regulatory T Cells Mainly through Axl Receptor. Mediators of Inflammation, 2017, 2017, 1-13.	3.0	38
64	Mitofusin 2 Promotes Apoptosis of CD4 ⁺ T Cells by Inhibiting Autophagy in Sepsis. Mediators of Inflammation, 2017, 2017, 1-15.	3.0	19
65	The involvement of endoplasmic reticulum stress response in immune dysfunction of dendritic cells after severe thermal injury in mice. Oncotarget, 2017, 8, 9035-9052.	1.8	15
66	Early antagonism of cerebral high mobility group box-1 protein is benefit for sepsis induced brain injury. Oncotarget, 2017, 8, 92578-92588.	1.8	20
67	Neuropilin-1 ^{high} CD4 ⁺ CD25 ⁺ Regulatory T Cells Exhibit Primary Negative Immunoregulation in Sepsis. Mediators of Inflammation, 2016, 2016, 1-11.	3.0	23
68	Interactions between Autophagy and Inhibitory Cytokines. International Journal of Biological Sciences, 2016, 12, 884-897.	6.4	68
69	Interleukin-37 Enhances the Suppressive Activity of Naturally Occurring CD4+CD25+ Regulatory T Cells. Scientific Reports, 2016, 6, 38955.	3.3	16
70	Vagal Modulation of the Inflammatory Response in Sepsis. International Reviews of Immunology, 2016, 35, 415-433.	3.3	41
71	Astragaloside IV attenuates inflammatory reaction via activating immune function of regulatory T-cells inhibited by HMGB1 in mice. Pharmaceutical Biology, 2016, 54, 3217-3225.	2.9	27
72	Serum Calprotectin Expression as a Diagnostic Marker for Sepsis in Postoperative Intensive Care Unit Patients. Journal of Interferon and Cytokine Research, 2016, 36, 607-616.	1.2	20

#	Article	IF	CITATIONS
73	Effect of tumor necrosis factor- \hat{l} ± induced protein 8 like-2 on immune function of dendritic cells in mice following acute insults. Oncotarget, 2016, 7, 30178-30192.	1.8	15
74	Tuftsin-derived T-peptide prevents cellular immunosuppression and improves survival rate in septic mice. Scientific Reports, 2015, 5, 16725.	3.3	16
75	Expression of IL-37 contributes to the immunosuppressive property of human CD4+CD25+ regulatory T cells. Scientific Reports, 2015, 5, 14478.	3.3	47
76	Serum Total Cholinesterase Activity on Admission Is Associated with Disease Severity and Outcome in Patients with Traumatic Brain Injury. PLoS ONE, 2015, 10, e0129082.	2.5	16
77	Xuebijing Injection Promotes M2 Polarization of Macrophages and Improves Survival Rate in Septic Mice. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-9.	1.2	27
78	Insights into the Apoptotic Death of Immune Cells in Sepsis. Journal of Interferon and Cytokine Research, 2015, 35, 17-22.	1.2	69
79	Sinomenine Hydrochloride Protects against Polymicrobial Sepsis via Autophagy. International Journal of Molecular Sciences, 2015, 16, 2559-2573.	4.1	50
80	Effect of Regulatory T Cells on Promoting Apoptosis of T Lymphocyte and Its Regulatory Mechanism in Sepsis. Journal of Interferon and Cytokine Research, 2015, 35, 969-980.	1.2	45
81	Pathophysiological Aspects of Sepsis: An Overview. Methods in Molecular Biology, 2015, 1237, 5-15.	0.9	19
82	Bacterial Endotoxin and Exotoxin in Severe Burns. , 2015, , 89-106.		0
83	Identification and Treatment of the Early Form of Neurogenic Pulmonary Edema in Emergency Room. Zhongguo Yi Xue Ke Xue Yuan Xue Bao Acta Academiae Medicinae Sinicae, 2015, 37, 343-7.	0.2	1
84	Anti-RAGE antibody ameliorates severe thermal injury in rats through regulating cellular immune function. Acta Pharmacologica Sinica, 2014, 35, 1167-1176.	6.1	3
85	Internal and External Carotid Artery Embolism Following Facial Injection of Autologous Fat. Aesthetic Surgery Journal, 2014, 34, NP83-NP87.	1.6	26
86	Septic encephalopathy: when cytokines interact with acetylcholine in the brain. Military Medical Research, 2014, 1, 20.	3.4	30
87	HSF-1 is Involved in Attenuating the Release of Inflammatory Cytokines Induced by LPS Through Regulating Autophagy. Shock, 2014, 41, 449-453.	2.1	31
88	Role of Mitofusin-2 in High Mobility Group Box-1 Protein-Mediated Apoptosis of T Cells <i>iin Vitro</i> . Cellular Physiology and Biochemistry, 2014, 33, 769-783.	1.6	22
89	The Significance and Regulatory Mechanisms of Innate Immune Cells in the Development of Sepsis. Journal of Interferon and Cytokine Research, 2014, 34, 2-15.	1.2	67
90	Advances in sepsis-associated liver dysfunction. Burns and Trauma, 2014, 2, 97.	0.7	94

#	Article	IF	Citations
91	Effects of intensive insulin therapy combined with low molecular weight heparin anticoagulant therapy on severe pancreatitis. Experimental and Therapeutic Medicine, 2014, 8, 141-146.	1.8	8
92	Macrophage Polarization in Inflammatory Diseases. International Journal of Biological Sciences, 2014, 10, 520-529.	6.4	754
93	Influence of intensive insulin therapy on vascular endothelial growth factor in patients with severe trauma. Journal of Huazhong University of Science and Technology [Medical Sciences], 2013, 33, 107-110.	1.0	3
94	Burn injury induces gelsolin expression and cleavage in the brain of mice. Neuroscience, 2013, 228, 60-72.	2.3	20
95	Effect of Xuebijing injection (血必净注射液) on systemic lupus erythematosus in mice. Chinese Journal of I Medicine, 2013, 19, 675-682.	ntegrative 1.6	3
96	Update on the Immunological Pathway of Negative Regulation in Acute Insults and Sepsis. Journal of Interferon and Cytokine Research, 2012, 32, 288-298.	1.2	8
97	The Role of Regulatory T Cells in the Pathogenesis of Sepsis and Its Clinical Implication. Journal of Interferon and Cytokine Research, 2012, 32, 341-349.	1.2	37
98	The effect of Astragaloside IV on immune function of regulatory T cell mediated by high mobility group box 1 protein in vitro. Fìtoterapìâ, 2012, 83, 1514-1522.	2.2	36
99	Endoplasmic reticulum stress and its regulator XBP-1 contributes to dendritic cell maturation and activation induced by high mobility group box-1 protein. International Journal of Biochemistry and Cell Biology, 2012, 44, 1097-1105.	2.8	44
100	Up-regulation of mitofusin-2 protects CD4+ T cells from HMGB1-mediated immune dysfunction partly through Ca2+-NFAT signaling pathway. Cytokine, 2012, 59, 79-85.	3.2	23
101	Effect of early intensive insulin therapy on immune function of aged patients with severe trauma. Journal of Huazhong University of Science and Technology [Medical Sciences], 2012, 32, 400-404.	1.0	4
102	Novel insights for high mobility group box 1 protein-mediated cellular immune response in sepsis:A systemic review. World Journal of Emergency Medicine, 2012, 3, 165.	1.0	21
103	Association of high mobility group box-1 protein levels with sepsis and outcome of severely burned patients. Cytokine, 2011, 53, 29-34.	3.2	39
104	High mobility group box 1 protein suppresses T cell-mediated immunity via CD11clowCD45RBhigh dendritic cell differentiation. Cytokine, 2011, 54, 205-211.	3.2	16
105	High mobility group box-1 protein regulate immunosuppression of regulatory T cells through toll-like receptor 4. Cytokine, 2011, 54, 296-304.	3.2	46
106	Naturally existing CD11clowCD45RBhigh dendritic cells protect mice from acute severe inflammatory response induced by thermal injury. Immunobiology, 2011, 216, 47-53.	1.9	14
107	Astragalus polysaccharides regulate T cell-mediated immunity via CD11chighCD45RBlow DCs in vitro. Journal of Ethnopharmacology, 2011, 136, 457-464.	4.1	76
108	Astragalus Polysaccharides Attenuate Postburn Sepsis via Inhibiting Negative Immunoregulation of CD4+CD25high T Cells. PLoS ONE, 2011, 6, e19811.	2.5	57

#	Article	IF	CITATIONS
109	Reduction of Plasma Gelsolin Levels Correlates with Development of Multiple Organ Dysfunction Syndrome and Fatal Outcome in Burn Patients. PLoS ONE, 2011, 6, e25748.	2.5	26
110	Clinical effects of intensive insulin therapy treating traumatic shock combined with multiple organ dysfunction syndrome. Journal of Huazhong University of Science and Technology [Medical Sciences], 2011, 31, 194-198.	1.0	3
111	Treatment with gelsolin reduces brain inflammation and apoptotic signaling in mice following thermal injury. Journal of Neuroinflammation, 2011, 8, 118.	7.2	37
112	The Potential Effect and Mechanism of High-Mobility Group Box 1 Protein on Regulatory T Cell-Mediated Immunosuppression. Journal of Interferon and Cytokine Research, 2011, 31, 249-257.	1.2	52
113	Stimulation of α7 Nicotinic Acetylcholine Receptor by Nicotine Increases Suppressive Capacity of Naturally Occurring CD4 ⁺ CD25 ⁺ Regulatory T Cells in Mice In Vitro. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 553-561.	2.5	88
114	Association between regulatory T cell activity and sepsis and outcome of severely burned patients: a prospective, observational study. Critical Care, 2010, 14, R3.	5.8	71
115	Inflammatory response and immune regulation of high mobility group box-1 protein in treatment of sepsis. World Journal of Emergency Medicine, 2010, 1, 93-8.	1.0	9
116	The Effect of a novel cytokine, high mobility group box 1 protein, on the development of traumatic sepsis. Chinese Journal of Integrative Medicine, 2009, 15, 13-15.	1.6	11
117	High mobility group box-1 protein acts as a coactivator of nuclear factor of activated T cells-2 in promoting interleukin-2 transcription. International Journal of Biochemistry and Cell Biology, 2009, 41, 641-648.	2.8	8
118	Influence of CD14 polymorphism on CD14 expression in patients with extensive burns. Burns, 2009, 35, 365-371.	1.9	5
119	Effect of high mobility group box-1 protein on apoptosis of peritoneal macrophages. Archives of Biochemistry and Biophysics, 2009, 492, 54-61.	3.0	20
120	The Effect of High Mobility Group Box-1 Protein on Splenic Dendritic Cell Maturation in Rats. Journal of Interferon and Cytokine Research, 2009, 29, 677-686.	1.2	34
121	THE EFFECT OF HIGH-MOBILITY GROUP BOX 1 PROTEIN ON ACTIVITY OF REGULATORY T CELLS AFTER THERMAL INJURY IN RATS. Shock, 2009, 31, 322-329.	2.1	63
122	RELATIONSHIP BETWEEN HIGH-MOBILITY GROUP BOX 1 PROTEIN RELEASE AND T-CELL SUPPRESSION IN RATS AFTER THERMAL INJURY. Shock, 2008, 30, 449-455.	2.1	33
123	RECOMBINANT BACTERICIDAL/PERMEABILITY-INCREASING PROTEIN INHIBITS ENDOTOXIN-INDUCED HIGH-MOBILITY GROUP BOX 1 PROTEIN GENE EXPRESSION IN SEPSIS. Shock, 2008, 29, 278-284.	2.1	19
124	The effect of high mobility group box-1 protein on immune function of human T lymphocytes in vitro. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue = Chinese Critical Care Medicine = Zhongguo Weizhongbing Jijiuyixue, 2008, 20, 7-13.	0.5	3
125	EFFECTS OF CD14-159 C/T POLYMORPHISM ON CD14 EXPRESSION AND THE BALANCE BETWEEN PROINFLAMMATORY AND ANTI-INFLAMMATORY CYTOKINES IN WHOLE BLOOD CULTURE. Shock, 2007, 28, 148-153.	2.1	31
126	Regulation of ICFâ€I signal pathways by androgen in skeletal muscle of glucocorticoidâ€treated rats. FASEB Journal, 2007, 21, A336.	0.5	0

#	Article	IF	CITATION
127	The mRNA expression patterns of tumor necrosis factor- $\hat{l}\pm$ and TNFR-I in some vital organs after thermal injury. World Journal of Gastroenterology, 2003, 9, 1038.	3.3	24
128	Lipopolysaccharide-Binding Protein and Lipopolysaccharide Receptor CD14 Gene Expression after Thermal Injury and its Potential Mechanism(s). Journal of Trauma, 2002, 53, 957-967.	2.3	22
129	Effect of recombinant bactericidal/permeability-increasing protein on endotoxin translocation and lipopolysaccharide-binding protein/CD14 expression in rats after thermal injury. Critical Care Medicine, 2001, 29, 1452-1459.	0.9	23
130	Monoclonal antibody to endotoxin attenuates hemorrhage-induced lung injury and mortality in rats. Critical Care Medicine, 1997, 25, 1030-1036.	0.9	44
131	Gut-Derived Endotoxemia and Multiple System Organ Failure following Gunshot Wounds Combined with Hemorrhagic Shock. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 38, 742-746.	2.4	14
132	Neuroimmune Regulation in Sepsis-Associated Encephalopathy: The Interaction Between the Brain and Peripheral Immunity. Frontiers in Neurology, 0, 13, .	2.4	4