Juan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4101910/publications.pdf

Version: 2024-02-01

27 papers

1,359 citations

16 h-index 27 g-index

28 all docs

28 docs citations

28 times ranked

2440 citing authors

#	Article	IF	CITATIONS
1	Highly robust and efficient MnZnFe ₂ O ₄ decorated fibrous KCC-SiO ₂ catalyst for the synthesis of light olefins from syngas. Catalysis Science and Technology, 2022, 12, 1892-1901.	2.1	3
2	Enhanced stability of a fused iron catalyst under realistic Fischer–Tropsch synthesis conditions: insights into the role of iron phases (χ-Fe ₅ C ₂ , θ-Fe ₃ C and α-Fe). Catalysis Science and Technology, 2022, 12, 4217-4227.	2.1	8
3	Enriched sp ² -Hybridized C Atoms toward the Tradeoff between Activity, Conductivity and Stability of Spherical Porous Metal–Nitrogen–Carbon Catalysts for Rechargeable Zinc–Air Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 9303-9314.	3.2	3
4	Effects of promoters on carburized fused iron catalysts in Fischer-Tropsch synthesis. Journal of Fuel Chemistry and Technology, 2021, 49, 1504-1512.	0.9	0
5	Hierarchical porous spinel MFe2O4 (M=Fe, Zn, Ni and Co) nanoparticles: Facile synthesis approach and their superb stability and catalytic performance in Fischer-Tropsch synthesis. International Journal of Hydrogen Energy, 2020, 45, 10754-10763.	3.8	17
6	Sonochemical engineering of highly efficient and robust Au nanoparticle-wrapped on Fe/ZrO ₂ nanorods and their controllable product selectivity in dimethyl oxalate hydrogenation. Catalysis Science and Technology, 2020, 10, 1125-1134.	2.1	15
7	Preparation of Singleâ€Phase Iron Nitrides and Investigation of Their Fischerâ€Tropsch Synthesis Performance. ChemistrySelect, 2020, 5, 3953-3958.	0.7	3
8	Ultrasound induced morphology-controlled synthesis of Au nanoparticles decorated on Fe2O3/ZrO2 catalyst and their catalytic performance in Fischer-Tropsch synthesis. Fuel Processing Technology, 2019, 187, 63-72.	3.7	15
9	Sol–Gel Autocombustion Combined Carbothermal Synthesis of Ironâ€Based Catalysts for the Fischer–Tropsch Reaction. ChemCatChem, 2018, 10, 831-836.	1.8	6
10	Fe3O4 nanocubes assembled on RGO nanosheets: Ultrasound induced in-situ and eco-friendly synthesis, characterization and their excellent catalytic performance for the production of liquid fuel in Fischer-tropsch synthesis. Ultrasonics Sonochemistry, 2018, 42, 271-282.	3.8	33
11	ZnO-Al2O3-promoted CuO/ZrO2 catalyst prepared by oxalate gel-coprecipitation for the conversion of water-bearing materials. Journal of Sol-Gel Science and Technology, 2018, 85, 382-393.	1.1	6
12	Sonochemical synthesis of Zn-promoted porous MgO-supported lamellar Cu catalysts for selective hydrogenation of dimethyl oxalate to ethanol and their long-term stability. New Journal of Chemistry, 2018, 42, 17553-17562.	1.4	17
13	Highly dispersed, ultra-small and noble metal-free Cu nanodots supported on porous SiO ₂ and their excellent catalytic hydrogenation of dimethyl oxalate to methyl glycolate. New Journal of Chemistry, 2018, 42, 10290-10299.	1.4	22
14	The evolution of Fe phases of a fused iron catalyst during reduction and Fischer–Tropsch synthesis. Catalysis Science and Technology, 2017, 7, 3626-3636.	2.1	37
15	Effect of Configuration Addition of Precursors on Structure and Catalysis of Cu/SiO ₂ Catalysts Prepared by Ammonia Evaporation–Hydrothermal Method. Industrial & Engineering Chemistry Research, 2017, 56, 9285-9292.	1.8	18
16	Sulfur Confined in Subâ€Nanometerâ€Sized 2 D Graphene Interlayers and Its Electrochemical Behavior in Lithium–Sulfur Batteries. Chemistry - an Asian Journal, 2016, 11, 2690-2694.	1.7	25
17	Sulfur Encapsulated in Graphitic Carbon Nanocages for Highâ€Rate and Longâ€Cycle Lithium–Sulfur Batteries. Advanced Materials, 2016, 28, 9539-9544.	11.1	392
18	Excellent performance in hydrogenation of esters over Cu/ZrO2 catalyst prepared by bio-derived salicylic acid. Catalysis Science and Technology, 2016, 6, 7220-7230.	2.1	18

#	Article	IF	Citations
19	The effect of the unpaired d-orbital electron number in Fe and Co catalysts on Fischer–Tropsch synthesis. Catalysis Science and Technology, 2016, 6, 7942-7945.	2.1	10
20	Influences of melting method on fused iron catalysts for Fischer–Tropsch synthesis. RSC Advances, 2016, 6, 60349-60354.	1.7	5
21	High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27838-27844.	4.0	68
22	Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li–S batteries. Journal of Materials Chemistry A, 2015, 3, 4799-4802.	5.2	121
23	A High apacity Tellurium@Carbon Anode Material for Lithiumâ€lon Batteries. Energy Technology, 2014, 2, 757-762.	1.8	66
24	Two-dimensional Cr ₂ O ₃ and interconnected graphene–Cr ₂ O ₃ nanosheets: synthesis and their application in lithium storage. Journal of Materials Chemistry A, 2014, 2, 944-948.	5. 2	48
25	Nanocomposites of ionic liquids confined in mesoporous silica gels: preparation, characterization and performance. Physical Chemistry Chemical Physics, 2010, 12, 1971.	1.3	73
26	Solubilities of the Gaseous and Liquid Solutes and Their Thermodynamics of Solubilization in the Novel Room-Temperature Ionic Liquids at Infinite Dilution by Gas Chromatography. Journal of Chemical & Engineering Data, 2007, 52, 2277-2283.	1.0	133
27	Pechmann Reaction in Non-Chloroaluminate Acidic Ionic Liquids under Solvent-Free Conditions. Advanced Synthesis and Catalysis, 2005, 347, 512-516.	2.1	141