Max Malacria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4101780/publications.pdf

Version: 2024-02-01

280 papers 16,147 citations

68 h-index 22764 112 g-index

295 all docs 295 docs citations

times ranked

295

8235 citing authors

#	Article	IF	CITATIONS
1	Dimerizing cascades of enallenamides reveal the visible-light-promoted activation of cumulated C–C double bonds. Chemical Science, 2022, 13, 2632-2639.	3.7	14
2	Câ^'I Selective Sonogashira and Heck Coupling Reactions Catalyzed by Aromatic Triangular Triâ€palladium. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
3	Photoelectric properties of aromatic triangular tri-palladium complexes and their catalytic applications in the Suzuki–Miyaura coupling reaction. Dalton Transactions, 2021, 50, 11834-11842.	1.6	8
4	Is Aromaticity a Driving Force in Catalytic Cycles? A Case from the Cycloisomerization of Enynes Catalyzed by All-Metal Aromatic Pd ₃ ⁺ Clusters and Carboxylic Acids. Journal of Physical Chemistry A, 2021, 125, 10035-10043.	1.1	7
5	Orthogonal Syntheses of 3.2.0 Bicycles from Enallenes Promoted by Visible Light. Organic Letters, 2020, 22, 6354-6359.	2.4	18
6	Diastereoselective bicyclization of enynols <i>via</i> gold catalysis. Organic Chemistry Frontiers, 2019, 6, 3584-3588.	2.3	6
7	Visibleâ€Lightâ€Promoted Polycyclizations of Dienynes. Angewandte Chemie, 2019, 131, 6775-6779.	1.6	2
8	Visibleâ€Lightâ€Promoted Polycyclizations of Dienynes. Angewandte Chemie - International Edition, 2019, 58, 6703-6707.	7.2	20
9	Complementary Reactivity of 1,6-Enynes with All-Metal Aromatic Trinuclear Complexes and Carboxylic Acids. Synthesis, 2019, 51, 1216-1224.	1.2	17
10	Alternative Routes to Tricyclic Cyclohexenes with Trinuclear Palladium Complexes. ACS Catalysis, 2018, 8, 144-147.	5.5	30
11	Bi-directional alkyne tandem isomerization via Pd(0)/carboxylic acid joint catalysis: expedient access to 1,3-dienes. Chemical Communications, 2018, 54, 14021-14024.	2.2	11
12	Synthesis of Carbolines via Palladium/Carboxylic Acid Joint Catalysis. Organic Letters, 2018, 20, 3220-3224.	2.4	34
13	Back Cover: Visible-Light, Photoredox-Mediated Oxidative Tandem Nitroso-Diels-Alder Reaction of Arylhydroxylamines with Conjugated Dienes (Eur. J. Org. Chem. 15/2017). European Journal of Organic Chemistry, 2017, 2017, 2205-2205.	1.2	1
14	Visibleâ€Light, Photoredoxâ€Mediated Oxidative Tandem Nitrosoâ€Diels–Alder Reaction of Arylhydroxylamines with Conjugated Dienes. European Journal of Organic Chemistry, 2017, 2017, 2095-2098.	1.2	12
15	All-metal aromatic cationic palladium triangles can mimic aromatic donor ligands with Lewis acidic cations. Chemical Science, 2017, 8, 7394-7402.	3.7	26
16	Semi-Reduction of Internal Alkynes with Prototypical Subnanometric Metal Surfaces: Bridging Homogeneous and Heterogeneous Catalysis with Trinuclear All-Metal Aromatics. ACS Sustainable Chemistry and Engineering, 2017, 5, 8205-8212.	3.2	37
17	A Synthetic Study towards the Marmycins and Analogues. Synthesis, 2017, 49, 587-592.	1.2	6
18	Assessing Ligand and Counterion Effects in the Noble Metal Catalyzed Cycloisomerization Reactions of 1,6-Allenynes: a Combined Experimental and Theoretical Approach. ACS Catalysis, 2016, 6, 5146-5160.	5.5	50

#	Article	IF	Citations
19	Pd Catalysis in Cyanide-Free Synthesis of Nitriles from Haloarenes via Isoxazolines. Organic Letters, 2016, 18, 6108-6111.	2.4	18
20	Boosting catalyst activity in cis-selective semi-reduction of internal alkynes by tailoring the assembly of all-metal aromatic tri-palladium complexes. Dalton Transactions, 2016, 45, 15786-15790.	1.6	33
21	Oxidation of bis-sulfinyl carbanions as the pivot of ionic/radical tandem reactions. Comptes Rendus Chimie, 2016, 19, 403-411.	0.2	4
22	Catalytic Semireduction of Internal Alkynes with Allâ€Metal Aromatic Complexes. ChemCatChem, 2015, 7, 3266-3269.	1.8	30
23	A Simple Synthesis of Triangular Allâ€Metal Aromatics Allowing Access to Isolobal Allâ€Metal Heteroaromatics. Chemistry - A European Journal, 2015, 21, 12271-12274.	1.7	24
24	Formal base-free homolytic aromatic substitutions via photoredox catalysis. Organic Chemistry Frontiers, 2015, 2, 464-469.	2.3	30
25	Gold-catalyzed cycloisomerization of [3]-cumulenols. Journal of Organometallic Chemistry, 2015, 795, 53-57.	0.8	10
26	Synthesis of marmycin A and investigation into its cellular activity. Nature Chemistry, 2015, 7, 744-751.	6.6	41
27	Rapid and Convergent Assembly of Natural Benzo[c]phenanthridines by Palladium/Norbornene Catalysis. Heterocycles, 2014, 88, 807.	0.4	5
28	Synthesis of Triangular Tripalladium Cations as Nobleâ∈Metal Analogues of the Cyclopropenyl Cation. Angewandte Chemie - International Edition, 2014, 53, 1987-1991.	7.2	54
29	Diastereoselective Synthesis of Dibenzoazepines through Chelation on Palladium(IV) Intermediates. Organic Letters, 2014, 16, 628-631.	2.4	65
30	Intramolecular Anion Effect in Polyoxometalateâ€Based Organocatalysts: Reactivity Enhancement and Chirality Transfer by a Metal Oxide–Organic Cation Interaction. Chemistry - A European Journal, 2014, 20, 16074-16077.	1.7	21
31	Gold-Catalyzed Polymerization Based on Carbene Polycyclopropanation. Macromolecules, 2014, 47, 6652-6656.	2.2	18
32	Molecular Complexity from Polyunsaturated Substrates: The Gold Catalysis Approach. Accounts of Chemical Research, 2014, 47, 953-965.	7.6	371
33	Electrophilic activation of allenenes and allenynes: analogies and differences between Brønsted and Lewis acid activation. Chemical Society Reviews, 2014, 43, 2916-2926.	18.7	62
34	Synthesis of natural quinazolinones and some of their analogues through radical cascade reactions involving N-acylcyanamides. Tetrahedron, 2013, 69, 7699-7705.	1.0	21
35	Radical Pd(<scp>iii</scp>)/Pd(<scp>i</scp>) reductive elimination in palladium sequences. Chemical Communications, 2013, 49, 10424-10426.	2,2	41
36	A silicon-position dependent 6-endo-trig cyclization during Tsuji–Trost alkylation. Tetrahedron, 2013, 69, 9398-9405.	1.0	8

#	Article	IF	Citations
37	New Advances in Bis(Sulfoxides) Chemistry. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 367-376.	0.8	2
38	Palladium/Norbornene Catalytic System: Chelation as a Tool To Control Regioselectivity of Pd(IV) Reductive Elimination. Journal of Organic Chemistry, 2013, 78, 1323-1328.	1.7	26
39	Highly Enantioselective Rhodium-Catalyzed [2+2+2] Cycloaddition of Diynes to Sulfonimines. Journal of the American Chemical Society, 2013, 135, 4576-4579.	6.6	66
40	Gold Compounds Anchored to a Metalated Arene Scaffold: Synthesis, X-ray Molecular Structures, and Cycloisomerization of Enyne. Organometallics, 2013, 32, 1665-1673.	1.1	17
41	Catalytic Version of Enediyne Cobaltâ€Mediated Cycloaddition and Selective Access to Unusual Bicyclic Trienes. Chemistry - A European Journal, 2013, 19, 5830-5835.	1.7	32
42	New Elements on the Behaviour of a Bissulfinylmethyl Radical. Australian Journal of Chemistry, 2013, 66, 346.	0.5	5
43	Ring Expansions Within the Goldâ€Catalyzed Cycloisomerization of <i>O</i> â€Tethered 1,6â€Enynes. Application to the Synthesis of Naturalâ€Productâ€like Macrocycles. ChemCatChem, 2013, 5, 1096-1099.	1.8	26
44	Substituent Effects in NHC-Boranes: Reactivity Switch in the Nucleophilic Fluorination of NHC-Boranes. Synlett, 2013, 24, 1260-1262.	1.0	4
45	Synthesis of Nitrogen-Containing Heterocycles via Ring-Closing Ene-Ene and Ene-Yne Metathesis Reactions: An Easy Access to 1- and 2-Benzazepine Scaffolds and Five- and Six-Membered Lactams. Synthesis, 2012, 44, 3523-3533.	1.2	20
46	The Cyanamide Moiety, Synthesis and Reactivity. Synthesis, 2012, 44, 1279-1292.	1.2	75
47	Homolytic Reduction of Onium Salts. Chimia, 2012, 66, 425-432.	0.3	25
48	Rearrangements of N-Acyl Isothioureas. Alternate Access to Acylguanidines from Cyanamides. Organic Letters, 2012, 14, 5538-5541.	2.4	30
49	A Water-Compatible NHC-Borane: Photopolymerizations in Water and Rate Constants for Elementary Radical Reactions. ACS Macro Letters, 2012, 1, 92-95.	2.3	59
50	An Improved Protocol for the Synthesis of [(\hat{l} - ⁴ -C ₄ +C ₅ +C ₅ +C ₅ +C ₅ +C _{+C₊}}	1.1	32
51	Selfâ€Buffering Hybrid Goldâ€Polyoxometalate Catalysts for the Catalytic Cyclization of Acidâ€Sensitive Substrates. Chemistry - A European Journal, 2012, 18, 12962-12965.	1.7	36
52	Synthesis of Aminopyridines and Aminopyridones by Cobalt atalyzed [2+2+2] Cycloadditions Involving Yne‥namides: Scope, Limitations, and Mechanistic Insights. Chemistry - A European Journal, 2012, 18, 4337-4344.	1.7	82
53	Rhâ€Catalyzed [5+1] and [4+1] Cycloaddition Reactions of 1,4â€Enyne Esters with CO: A Shortcut to Functionalized Resorcinols and Cyclopentenones. Chemistry - A European Journal, 2012, 18, 7243-7247.	1.7	65
54	Intramolecular homolytic substitution of seleninates – a computational study. Tetrahedron, 2012, 68, 323-328.	1.0	2

#	Article	IF	Citations
55	Nonâ€Innocent Ligands: New Opportunities in Iron Catalysis. European Journal of Inorganic Chemistry, 2012, 2012, 376-389.	1.0	157
56	Electron Paramagnetic Resonance and Computational Studies of Radicals Derived from Boron-Substituted N-Heterocyclic Carbene Boranes. Journal of the American Chemical Society, 2011, 133, 10312-10321.	6.6	105
57	Of the Ortho Effect in Palladium/Norbornene-Catalyzed Reactions: A Theoretical Investigation. Journal of the American Chemical Society, 2011, 133, 8574-8585.	6.6	176
58	Transition Metal Catalyzed Cycloisomerizations of $1,<$ i> $>$ n $>$ -Allenynes and -Allenenes. Chemical Reviews, 2011, 111, 1954-1993.	23.0	584
59	Activation of Allenes by Gold Complexes: A Theoretical Standpoint. Topics in Current Chemistry, 2011, 302, 157-182.	4.0	31
60	Carbonyl-Inserted Organo-Hybrids of a Dawson-Type Phosphovanadotungstate: Scope and Chemoselective Oxidation Catalysis. Organic Letters, 2011, 13, 5990-5993.	2.4	22
61	Silver-Catalyzed Cycloisomerization of 1,n-Allenynamides. Organic Letters, 2011, 13, 2952-2955.	2.4	51
62	N-Heterocyclic carbene-borane radicals as efficient initiating species of photopolymerization reactions under air. Polymer Chemistry, 2011, 2, 625-631.	1.9	67
63	Regioselective Cobalt-Catalyzed Formation of Bicyclic 3- and 4-Aminopyridines. Organic Letters, 2011, 13, 2030-2033.	2.4	74
64	Co(I)- versus Ru(II)-Catalyzed [2+2+2] cycloadditions involving alkynyl halides. Journal of Organometallic Chemistry, 2011, 696, 3906-3908.	0.8	18
65	Intramolecular homolytic substitution of sulfinates and sulfinamides – a computational study. Organic and Biomolecular Chemistry, 2011, 9, 3331.	1.5	13
66	Radical reductions of alkyl halides bearing electron withdrawing groups with N-heterocyclic carbene boranes. Organic and Biomolecular Chemistry, 2011, 9, 3415.	1.5	64
67	Combination of gold catalysis and Selectfluor for the synthesis of fluorinated nitrogen heterocycles. Beilstein Journal of Organic Chemistry, 2011, 7, 1379-1386.	1.3	32
68	Exception to the <i>ortho</i> Effect in Palladium/Norbornene Catalysis. Angewandte Chemie - International Edition, 2011, 50, 12253-12256.	7.2	87
69	Enantioselective Synthesis of Deoxymannojirimycin Based on Sharpless Asymmetric Epoxidation of a Highly Functionalized Allylic Alcohol. European Journal of Organic Chemistry, 2011, 2011, 2777-2780.	1.2	6
70	Alkynylboronates and â€boramides in Co ^I ―and Rh ^I â€Catalyzed [2+2+2] Cycloadditions: Construction of Oligoaryls through Selective Suzuki Couplings. European Journal of Organic Chemistry, 2011, 2011, 3283-3292.	1.2	48
71	Goldâ€Catalyzed 1,3â€Acyloxy Migration/5â€∢i>exoâ€dig Cyclization/1,5â€Acyl Migration of Diynyl Esters. Angewandte Chemie - International Edition, 2011, 50, 6868-6871.	7.2	98
72	Synthesis and Reactions of Nâ€Heterocyclic Carbene Boranes. Angewandte Chemie - International Edition, 2011, 50, 10294-10317.	7.2	398

#	Article	IF	CITATIONS
73	Palladiumâ€Catalyzed Reaction of Aryl Iodides with <i>ortho</i> àê€Bromoanilines and Norbornene/Norbornadiene: Unexpected Formation of Dibenzoazepine Derivatives. Angewandte Chemie - International Edition, 2011, 50, 12257-12261.	7.2	93
74	Lanthanide Polyoxocationic Complexes: Experimental and Theoretical Stability Studies and Lewis Acid Catalysis. Chemistry - A European Journal, 2011, 17, 14129-14138.	1.7	46
75	Nâ€Heterocyclic Carbeneâ€Catalyzed Hydrosilylation of Styryl and Propargylic Alcohols with Dihydrosilanes. Chemistry - A European Journal, 2011, 17, 9911-9914.	1.7	32
76	Enantioselective Ir ^I â€Catalyzed Carbocyclization of 1,6â€Enynes by the Chiral Counterion Strategy. Chemistry - A European Journal, 2011, 17, 13789-13794.	1.7	77
77	New elements in the gold(I)-catalyzed cycloisomerization of enynyl ester derivatives embedding a cyclohexane template. Journal of Organometallic Chemistry, 2011, 696, 388-399.	0.8	27
78	Copper-Catalyzed N-Arylation of Sulfonimidamides. Synlett, 2011, 2011, 849-851.	1.0	6
79	CAAC Boranes. Synthesis and characterization of cyclic (alkyl) (amino) carbene borane complexes from BF3 and BH3. Beilstein Journal of Organic Chemistry, 2010, 6, 709-712.	1.3	18
80	Goldâ€Catalyzed Crossâ€Couplings: New Opportunities for CC Bond Formation. ChemCatChem, 2010, 2, 493-497.	1.8	229
81	Radical Deoxygenation of Xanthates and Related Functional Groups with New Minimalist N-Heterocyclic Carbene Boranes. Organic Letters, 2010, 12, 3002-3005.	2.4	113
82	Estimated Rate Constants for Hydrogen Abstraction from N-Heterocyclic Carbeneâ^Borane Complexes by an Alkyl Radical. Organic Letters, 2010, 12, 2998-3001.	2.4	72
83	Lewisâ€Acidic Polyoxometalates as Reusable Catalysts for the Synthesis of Glucuronic Acid Esters under Microwave Irradiation. ChemSusChem, 2010, 3, 1249-1252.	3.6	28
84	Chemoselective Catalysis with Organosoluble Lewis Acidic Polyoxotungstates. Chemistry - A European Journal, 2010, 16, 7256-7264.	1.7	91
85	Cobaltâ€Mediated Linear 2:1 Coâ€oligomerization of Alkynes with Enol Ethers to Give 1â€Alkoxyâ€1,3,5â€Triene Missing Mode of Reactivity. Chemistry - A European Journal, 2010, 16, 8904-8913.	s: A 1.7	29
86	Oxidation of αâ€Alkoxy Allenes into α′â€Alkoxy Enones. Chemistry - A European Journal, 2010, 16, 9973-9976	5.1.7	14
87	Radical Synthesis of Guanidines from <i>N</i> â€Acyl Cyanamides. Angewandte Chemie - International Edition, 2010, 49, 2178-2181.	7.2	85
88	Oxidation of Alkyl Trifluoroborates: An Opportunity for Tinâ€Free Radical Chemistry. Angewandte Chemie - International Edition, 2010, 49, 8721-8723.	7.2	135
89	Inside Cover: Generation and Reactions of an Unsubstituted N-Heterocyclic Carbene Boryl Anion (Angew. Chem. Int. Ed. 48/2010). Angewandte Chemie - International Edition, 2010, 49, 9014-9014.	7.2	1
90	Bis-sulfoxides as ligands for platinum complexes. Tetrahedron: Asymmetry, 2010, 21, 1695-1700.	1.8	9

#	Article	IF	Citations
91	Synthesis of Orthogonally Protected Angular Nitrogen Polyheterocycles via CpCo-Catalyzed Pyridine Formation. Synlett, 2010, 2010, 2314-2318.	1.0	2
92	Cyclopentadienylcobalt-Mediated Intermolecular Cycloaddition of $\hat{l}\pm, \hat{l}\%$ -Diynes to (Cyclo)alkenes: Synthesis of Linearly Fused Oligocycles and Extension to Enantiomerically Pure (6aR,10aR)-Dihydroanthracyclinones. Synthesis, 2010, 2010, 2179-2200.	1,2	1
93	Radical Migration of Substituents of Aryl Groups on Quinazolinones Derived from <i>N</i> -Acyl Cyanamides. Journal of the American Chemical Society, 2010, 132, 4381-4387.	6.6	81
94	Substitution Reactions at Tetracoordinate Boron: Synthesis of N-Heterocyclic Carbene Boranes with Boronâ^'Heteroatom Bonds. Journal of the American Chemical Society, 2010, 132, 15072-15080.	6.6	121
95	Metalated-Arene-Phosphino Ligands: A Novel Approach to Open-Sided Gold Compounds. Organometallics, 2010, 29, 6636-6638.	1.1	12
96	Gold(I)-Catalyzed Cyclization of \hat{I}^2 -Allenylhydrazones: An Efficient Synthesis of Multisubstituted < i>N-Aminopyrroles. Organic Letters, 2010, 12, 4396-4399.	2.4	74
97	Boryltrihydroborate: Synthesis, Structure, and Reactivity as a Reductant in Ionic, Organometallic, and Radical Reactions. Journal of the American Chemical Society, 2010, 132, 11449-11451.	6.6	93
98	EPR Studies of the Generation, Structure, and Reactivity of N-Heterocyclic Carbene Borane Radicals. Journal of the American Chemical Society, 2010, 132, 2350-2358.	6.6	205
99	N-Heterocyclic Carbenesâ^'Borane Complexes: A New Class of Initiators for Radical Photopolymerization. Macromolecules, 2010, 43, 2261-2267.	2.2	123
100	Expeditious Synthesis of Phenanthridines from Benzylamines via Dual Palladium Catalysis. Organic Letters, 2010, 12, 5692-5695.	2.4	98
101	Preparation of NHC Borane Complexes by Lewis Base Exchange with Amineâr and Phosphineâr Boranes. Journal of Organic Chemistry, 2010, 75, 6983-6985.	1.7	60
102	Gold―and Platinum atalyzed Cycloisomerization of Enynyl Esters versus Allenenyl Esters: An Experimental and Theoretical Study. Chemistry - A European Journal, 2009, 15, 3243-3260.	1.7	129
103	Synthesis of Tricyclic Fused 3â€Aminopyridines through Intramolecular Co ^I â€Catalyzed [2+2+2] Cycloaddition between Ynamides, Nitriles, and Alkynes. Chemistry - A European Journal, 2009, 15, 2129-2139.	1.7	76
104	Intramolecular Homolytic Substitution of Sulfinates and Sulfinamides. Chemistry - A European Journal, 2009, 15, 10225-10232.	1.7	58
105	lonic and Organometallic Reductions with Nâ€Heterocyclic Carbene Boranes. Chemistry - A European Journal, 2009, 15, 12937-12940.	1.7	83
106	An Unusual Anion-Ï€ Interaction in an ;rido Organometallic Assembly: Synthesis, First Crystal Structure, and Computational Study. European Journal of Inorganic Chemistry, 2009, 2009, 3703-3707.	1.0	9
107	Towards the Synthesis of 3â€Silapiperidines. European Journal of Organic Chemistry, 2009, 2009, 1674-1678.	1.2	13
108	Airâ€Stable {(C ₅ H ₅)Co} Catalysts for [2+2+2] Cycloadditions. Angewandte Chemie - International Edition, 2009, 48, 1810-1813.	7.2	135

#	Article	IF	Citations
109	Chiral Recognition of Hybrid Metal Oxide by Peptides. Angewandte Chemie - International Edition, 2009, 48, 3466-3468.	7.2	96
110	Use of ionic liquids in the platinum- and gold-catalyzed cycloisomerization of enyne systems. Journal of Organometallic Chemistry, 2009, 694, 561-565.	0.8	33
111	The Role of Water in Platinumâ€Catalyzed Cycloisomerization of 1,6â€Enynes: A Combined Experimental and Theoretical Gas Phase Study. ChemCatChem, 2009, 1, 138-143.	1.8	33
112	Fixation of the Two Tabun Isomers in Acetylcholinesterase: A QM/MM Study. Journal of Physical Chemistry B, 2009, 113, 10001-10007.	1.2	34
113	Suzukiâ^'Miyaura Coupling of NHCâ^'Boranes: A New Addition to the Câ^'C Coupling Toolbox. Organic Letters, 2009, 11, 4914-4917.	2.4	74
114	Cyclopentadienyl Ligands as Perfect Anion Receptors: Teamwork between Ï€-Anion Interaction and Câ^'H···Anion Hydrogen Bonds. Crystal Growth and Design, 2009, 9, 5304-5310.	1.4	4
115	Generation and Trapping of Cyclopentenylidene Gold Species: Four Pathways to Polycyclic Compounds. Journal of the American Chemical Society, 2009, 131, 2993-3006.	6.6	226
116	Siliconâ^'Hydrogen Bond Activation and Hydrosilylation of Alkenes Mediated by CpCo Complexes: A Theoretical Study. Journal of the American Chemical Society, 2009, 131, 3007-3015.	6.6	29
117	$\langle i \rangle$ N $\langle i \rangle$ -Heterocyclic Carbene Boryl Radicals: A New Class of Boron-Centered Radical. Journal of the American Chemical Society, 2009, 131, 11256-11262.	6.6	254
118	Unprecedented Aromatic Homolytic Substitutions and Cyclization of Amidelminyl Radicals: Experimental and Theoretical Study. Chemistry - A European Journal, 2008, 14, 1238-1252.	1.7	66
119	Sensing the Chirality of Dawson Lanthanide Polyoxometalates [î± ₁ 3€LnP ₂ W ₁₇ O ₆₁] ^{7â^'} by Multinuclear NMR Spectroscopy. Chemistry - A European Journal, 2008, 14, 1532-1540.	1.7	56
120	Alkyne versus Allene Activation in Platinum―and Gold atalyzed Cycloisomerization of Hydroxylated 1,5â€Allenynes. Chemistry - A European Journal, 2008, 14, 1482-1491.	1.7	109
121	Chirality in Polyoxometalate Chemistry. European Journal of Inorganic Chemistry, 2008, 2008, 5001-5013.	1.0	184
122	Golden Carousel in Catalysis: The Cationic Gold/Propargylic Ester Cycle. Angewandte Chemie - International Edition, 2008, 47, 718-721.	7.2	265
123	Convergent Preparation of Enantiomerically Pure Polyalkylated Cyclopropane Derivatives. Angewandte Chemie - International Edition, 2008, 47, 6865-6868.	7.2	33
124	The Role of Bent Acyclic Allene Gold Complexes in Axisâ€toâ€Center Chirality Transfers. Angewandte Chemie - International Edition, 2008, 47, 7534-7538.	7.2	125
125	Cover Picture: Golden Carousel in Catalysis: The Cationic Gold/Propargylic Ester Cycle (Angew. Chem.) Tj ETQq $1\ 1$	0,784314 7.2	rgBT /Over
126	Inside Cover: The Role of Bent Acyclic Allene Gold Complexes in Axisâ€to enter Chirality Transfers (Angew. Chem. Int. Ed. 39/2008). Angewandte Chemie - International Edition, 2008, 47, 7370-7370.	7.2	0

#	Article	IF	Citations
127	Gold―vs. Platinum atalyzed Polycyclizations by <i>O</i> â€Acyl Migration. Solventâ€Free Reactions. Advanced Synthesis and Catalysis, 2008, 350, 43-48.	2.1	98
128	Identification of Polyoxometalates as Nanomolar Noncompetitive Inhibitors of Protein Kinase CK2. Chemistry and Biology, 2008, 15, 683-692.	6.2	151
129	Intramolecular homolytic substitution at the sulfur atom: an alternative way to generate phosphorus- and sulfur-centered radicals. Tetrahedron, 2008, 64, 11865-11875.	1.0	36
130	Complexes of Borane and N-Heterocyclic Carbenes: A New Class of Radical Hydrogen Atom Donor. Journal of the American Chemical Society, 2008, 130, 10082-10083.	6.6	253
131	Diastereoselective Synthesis of Enantiopure Acyclic β,β′-Disubstituted Vinylsulfoxides. Organic Letters, 2008, 10, 1917-1920.	2.4	19
132	Regioselective Activation of Oxo Ligands in Functionalized Dawson Polyoxotungstates. Journal of the American Chemical Society, 2008, 130, 4553-4561.	6.6	91
133	Water Dissociation on $\hat{l}\pm 1$ -Hafnium and Ytterbium Substituted Dawson Polyoxotungstates: A Density Functional Theory Study. Journal of Physical Chemistry A, 2008, 112, 13002-13005.	1.1	20
134	Thermal Intramolecular Alder-Ene Cycloisomerization of 1,6-Allenynes. Synlett, 2008, 2008, 751-754.	1.0	7
135	Probing the Amino-End Reactivity of Sulfonimidamides. Synlett, 2008, 2008, 2253-2256.	1.0	3
136	Cobalt-Mediated [2+2+2] Cycloaddition of Alkynyl Boronates to Indole and Pyrrole Double Bonds. Synlett, 2008, 2008, 2056-2060.	1.0	2
137	Platinum(II) Chloride Catalyzed Cycloisomerizations of 1,5-Enynes. Synthesis, 2007, 2007, 2037-2049.	1.2	3
138	Addition of Bis-sulfinyl Anions to Ketones: Stereoselective Synthesis of Allylic Alcohols through Evans-Mislow Rearrangement Based Domino Reactions. Synthesis, 2007, 2007, 2273-2278.	1.2	4
139	Cobalt-Catalyzed Cyclotrimerization of Alkynes:Â The Answer to the Puzzle of Parallel Reaction Pathways. Journal of the American Chemical Society, 2007, 129, 8860-8871.	6.6	154
140	Synthesis of 4:5-Benzo-1-cobalta-2-silacyclopentenes and their Reactions with Alkynes and Alkenes:Â An Expedient Route to Silicon-Containing Polycyclic Frameworks. Organometallics, 2007, 26, 819-830.	1.1	55
141	Synthesis, Characterization, and Structure of [GaCl3(NHC)] Complexes. Organometallics, 2007, 26, 3256-3259.	1.1	55
142	Tandem Gold(I)-Catalyzed Cyclization/Electrophilic Cyclopropanation of Vinyl Allenes. Organic Letters, 2007, 9, 2207-2209.	2.4	175
143	A General Strategy for Ligation of Organic and Biological Molecules to Dawson and Keggin Polyoxotungstates. Organic Letters, 2007, 9, 3981-3984.	2.4	84
144	Generation of Phosphorus-Centered Radicals via Homolytic Substitution at Sulfur. Organic Letters, 2007, 9, 1061-1063.	2.4	76

#	Article	IF	Citations
145	Cobalt-Mediated [2+2+2] Cycloaddition versus CH and NH Activation of 2-Pyridones and Pyrazinones with Alkynes: A Theoretical Study. Chemistry - A European Journal, 2007, 13, 7466-7478.	1.7	36
146	Cobalt-Mediated [2+2+2] Cycloaddition versus CH and NH Activation of Pyridones and Pyrazinones with Alkynes: An Experimental Study. Chemistry - A European Journal, 2007, 13, 7443-7465.	1.7	50
147	Increased Lewis Acidity in Hafnium-Substituted Polyoxotungstates. Chemistry - A European Journal, 2007, 13, 5426-5432.	1.7	76
148	Cobalt(I)-Mediated Preparation of Polyborylated Cyclohexadienes: Scope, Limitations, and Mechanistic Insight. Chemistry - A European Journal, 2007, 13, 5408-5425.	1.7	61
149	Radical Cyclization ofN-Acylcyanamides: Total Synthesis of Luotoninâ€A. Angewandte Chemie - International Edition, 2007, 46, 576-579.	7.2	133
150	From PtCl2- and Acid-Catalyzed to Uncatalyzed Cycloisomerization of 2-Propargyl Anilines: Access to Functionalized Indoles. Angewandte Chemie - International Edition, 2007, 46, 1881-1884.	7.2	124
151	Focus on France – The French Chemical Society is 150 Years Old. European Journal of Inorganic Chemistry, 2007, 2007, 2366-2367.	1.0	0
152	Focus on France – The French Chemical Society Is 150 Years Old. European Journal of Organic Chemistry, 2007, 2007, 3062-3063.	1,2	0
153	Production and Reactions of Organic-Soluble Lanthanide Complexes of the Monolacunary Dawson $[\hat{l}\pm 1\text{-P2W}17061]10\text{-Polyoxotungstate}$. Inorganic Chemistry, 2006, 45, 1389-1398.	1.9	74
154	Cobalt-Mediated Cyclic and Linear 2:1 Cooligomerization of Alkynes with Alkenes:Â A DFT Study. Journal of the American Chemical Society, 2006, 128, 8509-8520.	6.6	98
155	Improved Method for the Iodine(III)-Mediated Preparation of Aryl Sulfonimidates. Organic Letters, 2006, 8, 337-339.	2.4	27
156	Radical cascade cyclizations and platinum(II)-catalyzed cycloisomerizations of ynamides. Tetrahedron, 2006, 62, 3856-3871.	1.0	59
157	Diastereoselective approach to 11-aryl steroid skeletons through a cobalt(I)-mediated [2+2+2] cyclization of allenediynes. Tetrahedron, 2006, 62, 10582-10593.	1.0	31
158	Gold(I)- and Gold(III)-Catalyzed Cycloisomerization of Allenynes: A Remarkable Halide Effect. Angewandte Chemie - International Edition, 2006, 45, 7596-7599.	7.2	157
159	Silylated Vinyloxiranes – Recent Advances and Synthetic Applications. European Journal of Organic Chemistry, 2006, 2006, 453-462.	1.2	13
160	SN2′ Reactions between Lithiated Carbon Nucleophiles and Silylated Vinyloxiranes – Effects of Salts and Solvents on the Stereocontrol. European Journal of Organic Chemistry, 2006, 2006, 463-470.	1.2	8
161	From an Acyclic, Polyunsaturated Precursor to the Polycyclic Taxane Ring System: The [4+2]/[2+2+2] and [2+2+2]/[4+2] Cyclization Strategies. European Journal of Organic Chemistry, 2006, 2006, 1413-1421.	1.2	34
162	PtCl2- and PtCl4-Catalyzed Cycloisomerization of Polyunsaturated Precursors. European Journal of Organic Chemistry, 2006, 2006, 4618-4633.	1.2	54

#	Article	IF	Citations
163	Titanocene-Mediated Homolytic Opening of Epoxysilanes. Helvetica Chimica Acta, 2006, 89, 2297-2305.	1.0	12
164	Synthesis of a linear benzo[3]phenylene–[60]fullerene dyad. Tetrahedron Letters, 2005, 46, 8325-8328.	0.7	15
165	Enantioselective Synthesis of Thiosulfinates and of Acyclic Alkylidenemethylene Sulfide Sulfoxides. European Journal of Organic Chemistry, 2005, 2005, 1727-1730.	1.2	29
166	Cobalt(I)-Mediated Intramolecular [2+2+2] Cocyclizations of (Methylenecyclopropyl)diynes as an Easy Access to Cyclopropanated Oligocycles. European Journal of Organic Chemistry, 2005, 2005, 3000-3007.	1.2	33
167	Cycloadditions, Cycloisomerizations and Related Reactions of Alkynes Bearing Group 13 or 14 Heteroelements. Current Organic Chemistry, 2005, 9, 1699-1712.	0.9	61
168	Titanocene-Mediated Intramolecular Radical Vinylations. Synthesis, 2005, 2005, 1405-1420.	1.2	0
169	Highly Diastereoselective Michael Additions onto Dienyl Bis-Sulfoxides. Synthesis, 2005, 2005, 2449-2452.	1.2	1
170	Recent advances in the use of phosphorus-centered radicals in organic chemistry. Chemical Society Reviews, 2005, 34, 858.	18.7	247
171	A Stereoselective Route toward Polyhydoxylated Piperidines. A Total Synthesis of (±)-Deoxymannojirimycin. Organic Letters, 2005, 7, 4851-4854.	2.4	32
172	Efficient Preparation of Functionalized Hybrid Organic/Inorganic Wellsâ^'Dawson-type Polyoxotungstates. Journal of the American Chemical Society, 2005, 127, 6788-6794.	6.6	192
173	Iodine(III)-Mediated Preparations of Nitrogen-Containing Sulfur Derivatives: Dramatic Influence of the Sulfur Oxidation State. Chemistry - A European Journal, 2004, 10, 906-916.	1.7	42
174	A stereoselective synthesis of silylated epoxycyclopentanols bearing four contiguous stereogenic centers. Tetrahedron Letters, 2004, 45, 9123-9126.	0.7	16
175	Tandem PtCl2 catalyzed–thermal [3,3] rearrangements of enyne acetates. Tetrahedron, 2004, 60, 9745-9755.	1.0	67
176	Reactivity of silylated vinyloxiranes and silyl butene diols with palladium(0). Comptes Rendus Chimie, 2004, 7, 797-807.	0.2	3
177	Synthesis of Fused Arylboronic Esters via Cobalt(0)-Mediated Cycloaddition of Alkynylboronates with î±,ï‰-Diynes. Organic Letters, 2004, 6, 3405-3407.	2.4	91
178	Totally Chemo- and Regioselective Cobalt(I)-Mediated Formal Intermolecular Cyclotrimerization of Alkynes. Organic Letters, 2004, 6, 1519-1521.	2.4	62
179	PtCl2-Catalyzed Transannular Cycloisomerization of 1,5-Enynes:  A New Efficient Regio- and Stereocontrolled Access to Tricyclic Derivatives. Organic Letters, 2004, 6, 3771-3774.	2.4	82
180	PtCl2-Catalyzed Cycloisomerizations of Allenynes. Journal of the American Chemical Society, 2004, 126, 3408-3409.	6.6	108

#	Article	IF	CITATIONS
181	Reactivity of Î ² -LactamidoN-Sulfonyl Radicals. Organic Letters, 2004, 6, 921-923.	2.4	19
182	Efficient Copper-Mediated Reactions of Nitrenes Derived from Sulfonimidamides. Organic Letters, 2004, 6, 3573-3575.	2.4	72
183	Cobalt(I)-Mediated $[2 + 2 + 2]$ Cyclization of Allenediynes toward a Diastereoselective Approach to 11-Aryl Steroid Skeletons. Organic Letters, 2004, 6, 3937-3940.	2.4	48
184	Platinum Dichloride-Catalyzed Cycloisomerization of Ene-ynamides. Organic Letters, 2004, 6, 1509-1511.	2.4	137
185	PtCl2-Catalyzed Cycloisomerizations of 5-En-1-yn-3-ol Systems. Journal of the American Chemical Society, 2004, 126, 8656-8657.	6.6	234
186	Chapter 6 Towards the syntheses of natural protoilludanes and linear triquinanes from cycloundecadienynes. Strategies and Tactics in Organic Synthesis, 2004, 5, 153-181.	0.1	1
187	Diastereoselective Preparation of Silylated Pyrrolidones through Palladium-Catalysed Cyclisations. European Journal of Organic Chemistry, 2003, 2003, 2702-2708.	1.2	12
188	Transition Metal-Assisted Transformations of Diversely Functionalized Dienynes. European Journal of Organic Chemistry, 2003, 2003, 1759-1764.	1.2	6
189	A Molecular Approach to Self-Assembly of Trimethylsilylacetylene Derivatives on Gold. Chemistry - A European Journal, 2003, 9, 2574-2581.	1.7	30
190	Stereoselective lithiation of \hat{l}_{\pm} , \hat{l}_{-}^2 -epoxy- \hat{l}_{-}^3 , \hat{l}_{-}^2 -vinylsilanes and transformation into \hat{l}_{\pm} -silylated ketones. Tetrahedron, 2003, 59, 9759-9766.	1.0	21
191	The silicon effect on the regioselectivity of the Tsuji-Trost reaction. Experimental and theoretical approaches. Journal of Organometallic Chemistry, 2003, 687, 337-345.	0.8	13
192	Enantiopure alkylidene-1,1-bis-p-tolylsulfoxides as new partners in diastereoselective radical cyclizations. Tetrahedron: Asymmetry, 2003, 14, 2889-2896.	1.8	21
193	Reactivity of NBS towards N-allyl glycinyl derivatives. Comptes Rendus Chimie, 2003, 6, 451-455.	0.2	0
194	Diastereoselective Cobalt-Mediated [2 + 2 + 2] Cycloadditions of Substituted Linear Enediynes Phosphine Oxides:Â Scope and Limitations. Journal of Organic Chemistry, 2003, 68, 378-386.	1.7	48
195	Radical Cyclization Cascade Involving Ynamides:  An Original Access to Nitrogen-Containing Heterocycles. Organic Letters, 2003, 5, 5095-5097.	2.4	75
196	New and Efficient Procedure for the Preparation of Unsymmetrical Silaketals. Organic Letters, 2003, 5, 2037-2040.	2.4	39
197	N-Silyl-Tethered Radical Cyclizations:  A New Synthesis of γ-Amino Alcohols. Organic Letters, 2003, 5, 1341-1344.	2.4	21
198	Chemo- and Stereoselective Palladium-Catalyzed Allylic Alkylations Controlled by Silicon. Journal of Organic Chemistry, 2003, 68, 5588-5592.	1.7	27

#	Article	IF	Citations
199	A New Practical One-Pot Access to Sulfonimidates. Organic Letters, 2002, 4, 4093-4095.	2.4	33
200	The Behavior of 1,n-Enynes in the Presence of Transition Metals. Chemical Reviews, 2002, 102, 813-834.	23.0	884
201	New Efficient Construction of the ABC Core of the Taxoids via a Sequence of Consecutive Cobalt(I)-Mediated $[2+2+2]$ and $[4+2]$ Cyclizations. Organic Letters, 2002, 4, 1027-1029.	2.4	41
202	Long-Range Self-Assembly of a Polyunsaturated Linear Organosilane at then-Tetradecane/Au(111) Interface Studied by STM. Journal of the American Chemical Society, 2002, 124, 9998-9999.	6.6	48
203	Radical \hat{I}^2 -Elimination of a Sulfinyl Group to Afford Allenes. European Journal of Organic Chemistry, 2002, 2002, 1776-1787.	1.2	26
204	The Chemistry of C2-Symmetric Bis(sulfoxides): A New Approach in Asymmetric Synthesis. European Journal of Organic Chemistry, 2002, 2002, 3507-3525.	1.2	55
205	Highly stereoselective generation of \hat{l} ±-pyrones displaying four contiguous stereogenic centers. Tetrahedron Letters, 2002, 43, 3369-3371.	0.7	11
206	Selective transformations of differently functionalized 4-ethynyl-octa-1,7-dienes and 5-ethynyl-nona-1,8-dienes via intramolecular Pausonâ€"Khand reaction: preparation of new and useful building blocks for the synthesis of angularly fused triquinanes. Tetrahedron, 2002, 58, 1147-1158.	1.0	9
207	Stereoselective transition metal-catalyzed and radical polycyclizations. Current Opinion in Drug Discovery & Development, 2002, 5, 928-36.	1.9	0
208	Silylated pyrrolidones via diastereoselective Pd-catalysed intramolecular allylic alkylations. Tetrahedron Letters, 2001, 42, 6287-6289.	0.7	19
209	Reactivity of the TMM Entity in the Cyclopentene Series â ⁻ Observation of a Reversed Regioselectivity in Palladium-Catalyzed [3+2] Cycloadditions. European Journal of Organic Chemistry, 2001, 2001, 767-773.	1.2	7
210	Study of the Diastereoselectivity of Cobalt-Mediated [2+2+2] Cycloadditions of Substituted Linear Enediyne Esters. European Journal of Organic Chemistry, 2001, 2001, 3491-3500.	1.2	14
211	Intramolecular [2+2+2] Cyclization of Triynes and Enediynes Catalyzed by Col2-Mn-Phosphine Ligand. Advanced Synthesis and Catalysis, 2001, 343, 64-67.	2.1	36
212	Cobalt(I)-Mediated Cycloisomerization of Enynes: Mechanistic Insights. Chemistry - A European Journal, 2001, 7, 3517.	1.7	46
213	New developments in radical chemistry. Applications to total synthesis and asymmetric processes. Pure and Applied Chemistry, 2000, 72, 1605-1613.	0.9	17
214	1,4-Hydrogen Radical Transfer as a New and Versatile Tool for the Synthesis of Enantiomerically Pure 1,2,3-Triols. Organic Letters, 2000, 2, 2591-2594.	2.4	43
215	Efficient Preparation of a Highly Strained Eleven-Membered Ring. European Journal of Organic Chemistry, 2000, 2000, 155-163.	1.2	17
216	First Example of a Total Axial to Centered Chirality Transfer in the $[2 + 2 + 2]$ Cycloadditions of Allenediynes. Synthesis, 2000, 2000, 985-989.	1.2	26

#	Article	IF	Citations
217	A new radical synthesis of allenes. Tetrahedron Letters, 1999, 40, 3565-3568.	0.7	36
218	Synthesis of a new versatile dienophile and its use in a highly diastereoselective Diels-Alder reaction. Tetrahedron Letters, 1999, 40, 5015-5018.	0.7	8
219	Tin-free radical chemistry: intramolecular addition of alkyl radicals to aldehydes and ketones. Tetrahedron Letters, 1999, 40, 5511-5514.	0.7	74
220	Highly stereoselective induction in the cobalt-mediated [2+2+2] cycloaddition of chiral phosphine oxides substituted linear enediynes. Tetrahedron Letters, 1999, 40, 5849-5852.	0.7	27
221	Cobalt-mediated cycloisomerization of \hat{l} -substituted $\hat{l}\mu$ -acetylenic \hat{l}^2 -ketoesters construction of angular triquinane by a sequence ene/Pauson-Khand reactions. Tetrahedron, 1999, 55, 5113-5128.	1.0	53
222	Improvement of the diastereoselectivity of the cobalt-mediated [2+2+2] cycloaddition of substituted linear enediynes. Tetrahedron Letters, 1999, 40, 707-710.	0.7	28
223	Asymmetric Intramolecular Radical Vinylation Using Enantiopure Sulfoxides as Temporary Chiral Auxiliaries. Journal of the American Chemical Society, 1999, 121, 11395-11401.	6.6	65
224	5-Endo-TrigRadical Cyclizations of Bromomethyldimethylsilyl Diisopropylpropargylic Ethers. A Highly Diastereoselective Access to Functionalized Cyclopentanes. Journal of Organic Chemistry, 1999, 64, 4920-4925.	1.7	62
225	Study of a Radical Cyclizations Cascade Leading to Bicyclo[3.1.1]heptanes. Journal of Organic Chemistry, 1999, 64, 819-825.	1.7	40
226	Cobalt-mediated cyclotrimerization and cycloisomerization reactions. Synthetic applications. Pure and Applied Chemistry, 1999, 71, 1463-1470.	0.9	33
227	Intramolecular addition of vinyl radicals to aldehydes. Tetrahedron Letters, 1998, 39, 833-836.	0.7	25
228	Radical Cyclization/ \hat{l}^2 -Elimination Tandem Reactions: Enantiopure Sulfoxides as Temporary Chiral Auxiliaries. Angewandte Chemie - International Edition, 1998, 37, 2116-2118.	7.2	34
229	Synthesis of variously substituted allenediynes and their cobalt (I)-mediated [2+2+2] cycloaddition reactions. Tetrahedron, 1998, 54, 9373-9392.	1.0	49
230	The [4+2], [2+2] strategy for the construction of the AB taxane ring system. Tetrahedron Letters, 1998, 39, 1561-1564.	0.7	17
231	Regio- and stereoselective palladium(0)-catalyzed alkylation of vinyloxiranes with non-stabilized lithium ester enolates nucleophiles. A direct access to highly functionalized allylic alcohols. Tetrahedron Letters, 1998, 39, 8849-8852.	0.7	18
232	Silicon effect favoring the formation of a cyclopentene via palladium-catalyzed 5-endo-trig cyclisation. Tetrahedron Letters, 1998, 39, 9659-9660.	0.7	22
233	From Acyclic Precursors to Linear Triquinanes through a Diastereoselective One-Pot Process. A New Illustration of the Synthetic Power of Radical Cascades. Journal of Organic Chemistry, 1998, 63, 6764-6765.	1.7	63
234	Synthesis of Variously Substituted Spirobenzocyclobutenes. Synthesis, 1998, 1998, 436-443.	1.2	7

#	Article	IF	Citations
235	Synthetic Usefulness of the Cobalt(I)-Mediated Ene Type Reaction for the Diastereoselective Construction of Bicyclo[n.3.0]derivatives. Synlett, 1997, 1997, 931-932.	1.0	24
236	Intramolecular Reactions of Temporarily Silicon-Tethered Molecules. Synthesis, 1997, 1997, 813-854.	1.2	156
237	Biomimetic Diastereoselective Total Synthesis of epi-Illudol via a Transannular Radical Cyclizations Strategy. Journal of the American Chemical Society, 1997, 119, 3427-3428.	6.6	85
238	Unprecedented Radical Cyclizations Cascade Leading to Bicyclo[3.1.1]Heptanes. Toward a New Generation of Radical Cascades. Journal of the American Chemical Society, 1997, 119, 5037-5038.	6.6	36
239	Design of a radical translocation step through 1, n (n = 5, 6, 7) hydrogen transfers for incorporation into new radical cascades. Tetrahedron, 1997, 53, 13797-13810.	1.0	23
240	Stereocontrolled rearrangement of silylated vinyloxiranes into \hat{l}_{\pm} -trialkylsilyl- \hat{l}^2 , \hat{l}^3 -unsaturated aldehydes. Tetrahedron Letters, 1997, 38, 5493-5496.	0.7	20
241	5-endo-trigRadical Cyclizations:Â A New Means to the Stereoselective Synthesis of Cyclopentanes and Diquinanes. Journal of the American Chemical Society, 1996, 118, 3992-3993.	6.6	61
242	New Cobalt-Catalyzed Cycloisomerization of $\hat{l}\mu$ -Acetylenic \hat{l}^2 -Keto Esters. Application to a Powerful Cyclization Reactions Cascade. Journal of Organic Chemistry, 1996, 61, 2699-2708.	1.7	94
243	Selective Preparation of Complex Polycyclic Molecules from Acyclic Precursors via Radical Mediated- or Transition Metal-Catalyzed Cascade Reactions. Chemical Reviews, 1996, 96, 289-306.	23.0	412
244	Stereocontrolled synthesis of \hat{l} ±-trialkylsilyl- \hat{l}^2 , \hat{l}^3 -unsaturated aldehydes via palladium (0) catalysis. Synthetic usefulness. Tetrahedron, 1996, 52, 7487-7510.	1.0	28
245	Variations on radical cascades of vinyl radicals generated from bromomethyldimethylsilyl propargyl ethers. Tetrahedron, 1996, 52, 11405-11420.	1.0	22
246	First examples of cobalt-mediated formal Alder ene reaction of allenynes. Tetrahedron Letters, 1996, 37, 7027-7030.	0.7	66
247	Novel reactivity of enynes in presence of cobalt (I) complexes. Tetrahedron Letters, 1996, 37, 7353-7356.	0.7	29
248	Unusual reactivity of acetate versus carbonate in palladium-catalyzed nucleophilic substitutions: A strong silicon effect. Tetrahedron Letters, 1996, 37, 8483-8486.	0.7	37
249	Reversal of the Diastereoselectivity in a Sequence of Cycloaddition Reactions: [2+2+2], Ene Type, [4+2]. A Totally Stereoselective Access to the Basic Skeleton of the Kaurane Family Synlett, 1996, 1996, 105-107.	1.0	21
250	Total chirality transfer in palladium(O)-catalyzed rearrangement of silicon substituted vinyloxiranes. Tetrahedron: Asymmetry, 1995, 6, 697-700.	1.8	16
251	Stereoselective addition of nucleophiles on \hat{l}_{\pm} -trialkylsilyl- \hat{l}^2 , \hat{l}^3 -unsaturated aldehydes. Tetrahedron Letters, 1995, 36, 1641-1644.	0.7	20
252	Palladium-catalyzed intramolecular cyclization of vinyloxirane regioselective formation of cyclobutanol derivative. Tetrahedron Letters, 1995, 36, 2487-2490.	0.7	18

#	Article	lF	Citations
253	LIGAND EFFECTS IN PALLADIUM(0)-CATALYZED REARRANGEMENT OF A SILICON SUBSTITUTED VINYLOXIRANE. Phosphorus, Sulfur and Silicon and the Related Elements, 1995, 107, 275-277.	0.8	4
254	A New Cyclization Reactions Cascade: Ene Type, $[2 + 2 + 2]$, $[4 + 2]$. Stereoselective Formation of Six Carbon-Carbon Bonds and Four Rings in a One-Pot Sequence. Journal of Organic Chemistry, 1995, 60, 2664-2665.	1.7	30
255	Radical Cyclization of Bromomethyldimethylsilyl Propargyl Ethers; a General Method for the Stereoselective Synthesis of Variously Substituted Trimethylenemethane (TMM) Precursors. Synthetic Communications, 1994, 24, 1215-1221.	1.1	5
256	Radical Cyclization of Bromomethyldimethylsilyl Propargyl Ethers. Diastereoselective Synthesis of Functionalized Cyclopentanone Precursorsviaa (1,5) Hydrogen-Atom Transfer Synlett, 1994, 1994, 958-960.	1.0	21
257	Studies on diastereoselectivity of the cobalt(I) catalyzed cycloisomerization of substituted \hat{l}_{μ} -acetylenic \hat{l}^{2} -ketoester. Tetrahedron Letters, 1994, 35, 6677-6680.	0.7	41
258	Radical cyclization of bromomethyldimethylsilyl propargyl ethers; synthesis of a carbocyclic core of steroid skeleton by a tandem radical cyclization. Tetrahedron Letters, 1994, 35, 8601-8604.	0.7	24
259	Synthetic approach to aphidicolan and stemodan basic skeletons using a "Tandem Principle―[2+2+2] and [4+2] cycloaddition reactions. Tetrahedron Letters, 1994, 35, 417-420.	0.7	17
260	Allenes as new partners in intramolecular cobalt-mediated [2+2+2] cycloaddition reactions. Tetrahedron Letters, 1994, 35, 2341-2344.	0.7	29
261	First Tandem Radical Cyclization/Intramolecular Diels-Alder Reaction. Journal of Organic Chemistry, 1994, 59, 6885-6886.	1.7	11
262	A New Rare Example of Cyclopropanation in Free-Radical Chemistry. Journal of Organic Chemistry, 1994, 59, 718-719.	1.7	36
263	Stereoselective access to the basic skeleton of tetracyclic diterpenes via a sequence of consecutive [3 $+ 2$], [2 $+ 2 + 2$], and [4 $+ 2$] cycloaddition reactions. Journal of Organic Chemistry, 1993, 58, 4298-4305.	1.7	28
264	Radical cyclization of (bromomethyl)dimethylsilyl propargyl ethers. Regio-, chemo- and stereoselectivity Journal of Organic Chemistry, 1992, 57, 3085-3093.	1.7	82
265	Stereoselective additions of silicon centered radical to α-chiral olefins: A Felkin-Anh stereoelectronic control Tetrahedron Letters, 1992, 33, 5511-5514.	0.7	32
266	Radical cyclization of bromomethyldimethylsilyl propargyl ethersâ€"VIII. Bimolecular stereoselective hydrogen abstraction by trisubstituted vinyl radicals. A new example of rare (1,4) hydrogen transfer Tetrahedron Letters, 1992, 33, 1893-1896.	0.7	31
267	Palladium(0)-catalyzed rearrangement of silicon substituted vinyloxiranes. Enantiocontrolled preparation of \hat{l}_{\pm} -tertiodutyldimethylsilyl- \hat{l}^2 , \hat{l}^3 -unsaturated aldehydes Tetrahedron Letters, 1992, 33, 3859-3862.	0.7	28
268	Acyclic diastereofacial selection in radical addition Tetrahedron Letters, 1991, 32, 3683-3686.	0.7	29
269	Radical Cyclization of (Bromomethyl)dimethylsilyl Propargyl Ethers; III. Stereoselective Hydrogen Abstraction of Trisubstituted Vinyl Radicals. Application to a Terpenoid Building Block Synthesis1. Synlett, 1991, 1991, 58-60.	1.0	12
270	Chemoselectivity of the intramolecular radical addition between triple and double bond Tetrahedron Letters, 1990, 31, 3555-3558.	0.7	20

#	Article	IF	CITATIONS
271	Radical cyclization of (bromomethyl)dimethylsilyl propargyl ethers regioselective intramolecular cyclization of vinyl radicals Tetrahedron Letters, 1990, 31, 4445-4448.	0.7	20
272	Stereoselective Access to the Basic Skeleton of Tetracyclic Diterpenes via a Sequence of Consecutive $[3+2]$, $[2+2+2]$, and $[4+2]$ Cycloaddition Reactions. Studies on the Stereoselectivity of the Intramolecular Diels-Alder Reaction. Synlett, 1990, 1990, 667-669.	1.0	3
273	Radical Cyclization of (Bromomethyl)dimethylsilyl Propargyl Ethers; VI. Serial Radical Cyclizations Leading to a Stereoselective Synthesis of Functionalized Diquinane Framework from an Acyclic Substrate1. Synlett, 1990, 1990, 320-321.	1.0	21
274	A stereoselective access to the basic skeleton of phyllocladane type diterpenes: $[3+2]$, $[2+2+2]$, and $[4+2]$ cycloaddition. Tetrahedron Letters, 1989, 30, 2541-2544.	0.7	14
275	Asymmetric induction in the palladium catalyzed [3+2] cycloaddition reaction of trimethylenemethane with homochiral vinylsulfoxides. Tetrahedron Letters, 1989, 30, 1803-1806.	0.7	32
276	Silver mediated acetylenic oxy cope rearrangement. Tetrahedron, 1986, 42, 1333-1344.	1.0	33
277	Stereospecific cobalt-mediated enediyne cyclization involving a tetrasubstituted double bond: one-step construction of the hydrophenanthrene nucleus incorporating two adjacent quaternary centers. Journal of Organic Chemistry, 1984, 49, 5010-5012.	1.7	26
278	Reaction des hexadiene-1,5 ols-3 avec le trifluoroacetate mercurique; transposition d'oxy-cope a temperature ambiante Tetrahedron Letters, 1982, 23, 4263-4266.	0.7	21
279	Synthese et transposition thermique d'alcools ?-ethyleniques ?'-alleniques. Tetrahedron, 1980, 36, 1953-1960.	1.0	11
280	Photoepoxidation of vinylallenes. Journal of Organic Chemistry, 1979, 44, 885-886.	1.7	24