Marcia O'Malley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4101662/publications.pdf

Version: 2024-02-01

		185998	149479
185	4,423	28	56
papers	citations	h-index	g-index
188	188	188	3431
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Design of a haptic arm exoskeleton for training and rehabilitation. IEEE/ASME Transactions on Mechatronics, 2006, 11 , 280-289.	3.7	266
2	Design, Control and Performance of <i>RiceWrist:</i> A Force Feedback Wrist Exoskeleton for Rehabilitation and Training. International Journal of Robotics Research, 2008, 27, 233-251.	5.8	216
3	A Review of Intent Detection, Arbitration, and Communication Aspects of Shared Control for Physical Human–Robot Interaction. Applied Mechanics Reviews, 2018, 70, .	4.5	206
4	Minimal Assist-as-Needed Controller for Upper Limb Robotic Rehabilitation. IEEE Transactions on Robotics, 2016, 32, 113-124.	7.3	178
5	Current Trends in Robot-Assisted Upper-Limb Stroke Rehabilitation: Promoting Patient Engagement in Therapy. Current Physical Medicine and Rehabilitation Reports, 2014, 2, 184-195.	0.3	159
6	A decade retrospective of medical robotics research from 2010 to 2020. Science Robotics, 2021, 6, eabi8017.	9.9	158
7	An index finger exoskeleton with series elastic actuation for rehabilitation: Design, control and performance characterization. International Journal of Robotics Research, 2015, 34, 1747-1772.	5.8	140
8	Design and Optimization of an EEG-Based Brain Machine Interface (BMI) to an Upper-Limb Exoskeleton for Stroke Survivors. Frontiers in Neuroscience, 2016, 10, 122.	1.4	130
9	Shared Control in Haptic Systems for Performance Enhancement and Training. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2006, 128, 75-85.	0.9	129
10	Normalized Movement Quality Measures for Therapeutic Robots Strongly Correlate With Clinical Motor Impairment Measures. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18, 433-444.	2.7	88
11	Hybrid Rigid-Soft Hand Exoskeleton to Assist Functional Dexterity. IEEE Robotics and Automation Letters, 2019, 4, 73-80.	3.3	84
12	Position Synchronization in Bilateral Teleoperation Under Time-Varying Communication Delays. IEEE/ASME Transactions on Mechatronics, 2015, 20, 245-253.	3.7	79
13	A Subject-Adaptive Controller for Wrist Robotic Rehabilitation. IEEE/ASME Transactions on Mechatronics, 2015, 20, 1338-1350.	3.7	77
14	The Task-Dependent Efficacy of Shared-Control Haptic Guidance Paradigms. IEEE Transactions on Haptics, 2012, 5, 208-219.	1.8	76
15	Design and validation of the RiceWrist-S exoskeleton for robotic rehabilitation after incomplete spinal cord injury. Robotica, 2014, 32, 1415-1431.	1.3	73
16	Incorporating simulation in vascular surgery education. Journal of Vascular Surgery, 2010, 52, 1072-1080.	0.6	59
17	The Rice Haptic Rocker: Skin stretch haptic feedback with the Pisa/IIT SoftHand., 2017, , .		57
18	A Time-Domain Approach to Control of Series Elastic Actuators: Adaptive Torque and Passivity-Based Impedance Control. IEEE/ASME Transactions on Mechatronics, 2016, 21, 2085-2096.	3.7	54

#	Article	IF	CITATIONS
19	Robotic training and clinical assessment of upper extremity movements after spinal cord injury: A single case report. Journal of Rehabilitation Medicine, 2012, 44, 186-188.	0.8	53
20	Mechanical design of a distal arm exoskeleton for stroke and spinal cord injury rehabilitation., 2011, 2011, 5975428.		46
21	Transcranial direct current stimulation (tDCS) of the primary motor cortex and robot-assisted arm training in chronic incomplete cervical spinal cord injury: A proof of concept sham-randomized clinical study. NeuroRehabilitation, 2016, 39, 401-411.	0.5	45
22	Design and characterization of the OpenWrist: A robotic wrist exoskeleton for coordinated hand-wrist rehabilitation., 2017, 2017, 720-725.		45
23	Learning from Physical Human Corrections, One Feature at a Time. , 2018, , .		45
24	Disturbance-Observer-Based Force Estimation for Haptic Feedback. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2011, 133, .	0.9	44
25	Tactile Feedback of Object Slip Facilitates Virtual Object Manipulation. IEEE Transactions on Haptics, 2015, 8, 454-466.	1.8	44
26	Negative efficacy of fixed gain error reducing shared control for training in virtual environments. ACM Transactions on Applied Perception, 2009, 6, 1-21.	1.2	43
27	The hBracelet: A Wearable Haptic Device for the Distributed Mechanotactile Stimulation of the Upper Limb. IEEE Robotics and Automation Letters, 2018, 3, 2198-2205.	3.3	42
28	Smoothness of surgical tool tip motion correlates to skill in endovascular tasks. IEEE Transactions on Human-Machine Systems, 2016, 46, 647-659.	2.5	41
29	A robotic exoskeleton for rehabilitation and assessment of the upper limb following incomplete spinal cord injury. , 2015, , .		40
30	A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance. Experimental Neurology, 2020, 328, 113274.	2.0	39
31	Progressive shared control for training in virtual environments. , 2009, , .		38
32	Robot-Assisted Training of Arm and Hand Movement Shows Functional Improvements for Incomplete Cervical Spinal Cord Injury. American Journal of Physical Medicine and Rehabilitation, 2017, 96, S171-S177.	0.7	38
33	An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 104.	2.4	35
34	Skin Stretch Haptic Feedback to Convey Closure Information in Anthropomorphic, Under-Actuated Upper Limb Soft Prostheses. IEEE Transactions on Haptics, 2019, 12, 508-520.	1.8	35
35	System Characterization of MAHI Exo-II: A Robotic Exoskeleton for Upper Extremity Rehabilitation. , 2014, 2014, .		32
36	Effects of Assist-As-Needed Upper Extremity Robotic Therapy after Incomplete Spinal Cord Injury: A Parallel-Group Controlled Trial. Frontiers in Neurorobotics, 2017, 11, 26.	1.6	31

#	Article	IF	Citations
37	Progressive haptic and visual guidance for training in a virtual dynamic task. , 2010, , .		30
38	Mechanical design of RiceWrist-S: A forearm-wrist exoskeleton for stroke and spinal cord injury rehabilitation. , 2012 , , .		30
39	Understanding the role of haptic feedback in a teleoperated/prosthetic grasp and lift task., 2013,,.		30
40	Conveying language through haptics. , 2018, , .		29
41	Application of Levant's differentiator for velocity estimation and increased Z-width in haptic interfaces. , $2011,\ldots$		28
42	Kinesthetic Feedback During 2DOF Wrist Movements via a Novel MR-Compatible Robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1489-1499.	2.7	28
43	A Myoelectric Control Interface for Upper-Limb Robotic Rehabilitation Following Spinal Cord Injury. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 978-987.	2.7	28
44	Interaction Control Capabilities of an MR-Compatible Compliant Actuator for Wrist Sensorimotor Protocols During fMRI. IEEE/ASME Transactions on Mechatronics, 2015, 20, 2678-2690.	3.7	27
45	Electromagnetic tracking of flexible robotic catheters enables "assisted navigation―and brings automation to endovascular navigation in an in vitro study. Journal of Vascular Surgery, 2018, 67, 1274-1281.	0.6	27
46	Multi-Sensory Stimuli Improve Distinguishability of Cutaneous Haptic Cues. IEEE Transactions on Haptics, 2020, 13, 286-297.	1.8	27
47	Assessing and Inducing Neuroplasticity With Transcranial Magnetic Stimulation and Robotics for Motor Function. Archives of Physical Medicine and Rehabilitation, 2006, 87, 59-66.	0.5	26
48	Expertise-Based Performance Measures in a Virtual Training Environment. Presence: Teleoperators and Virtual Environments, 2009, 18, 449-467.	0.3	26
49	Leveraging disturbance observer based torque control for improved impedance rendering with series elastic actuators., 2015,,.		25
50	On the stability and accuracy of high stiffness rendering in non-backdrivable actuators through series elasticity. Mechatronics, 2015, 26, 64-75.	2.0	25
51	Neural activity modulations and motor recovery following brain-exoskeleton interface mediated stroke rehabilitation. Neurolmage: Clinical, 2020, 28, 102502.	1.4	24
52	Mathematical equations as executable models of mechanical systems. , 2010, , .		24
53	Syntacts: Open-Source Software and Hardware for Audio-Controlled Haptics. IEEE Transactions on Haptics, 2021, 14, 225-233.	1.8	23
54	Design of a series elastic actuator for a compliant parallel wrist rehabilitation robot., 2013, 2013, 6650481.		22

#	Article	IF	Citations
55	A Multisensory Approach to Present Phonemes as Language Through a Wearable Haptic Device. IEEE Transactions on Haptics, 2021, 14, 188-199.	1.8	22
56	Assessing Wrist Movement With Robotic Devices. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1585-1595.	2.7	21
57	Toward improved sensorimotor integration and learning using upper-limb prosthetic devices. , 2010, 2010, 5077-80.		20
58	Efficacy of shared-control guidance paradigms for robot-mediated training., 2011,,.		20
59	Spatially Separating Haptic Guidance From Task Dynamics Through Wearable Devices. IEEE Transactions on Haptics, 2019, 12, 581-593.	1.8	20
60	Haptic Interfaces., 2008,, 25-73.		19
61	Evaluation of Velocity Estimation Methods Based on Their Effect on Haptic Device Performance. IEEE/ASME Transactions on Mechatronics, 2018, 23, 604-613.	3.7	19
62	Improving Perception Accuracy with Multi-sensory Haptic Cue Delivery. Lecture Notes in Computer Science, 2018, , 289-301.	1.0	19
63	On the role of wearable haptics for force feedback in teleimpedance control for dual-arm robotic teleoperation. , 2019, , .		19
64	The model for Fundamentals of Endovascular Surgery (FEVS) successfully defines the competent endovascular surgeon. Journal of Vascular Surgery, 2015, 62, 1660-1666.e3.	0.6	18
65	Vision-based force sensing for nanomanipulation. IEEE/ASME Transactions on Mechatronics, 2011, 16, 1177-1183.	3.7	17
66	Detecting movement intent from scalp EEG in a novel upper limb robotic rehabilitation system for stroke., 2014, 2014, 4127-4130.		17
67	Compensating position drift in Time Domain Passivity Approach based teleoperation. , 2014, , .		17
68	Development, control, and MRI-compatibility of the MR-SoftWrist., 2015, , .		17
69	Kinematics effectively delineate accomplished users of endovascular robotics with a physical training model. Journal of Vascular Surgery, 2015, 61, 535-541.	0.6	17
70	Improving robotic stroke rehabilitation by incorporating neural intent detection: Preliminary results from a clinical trial., 2017, 2017, 122-127.		17
71	Impact of visual error augmentation methods on task performance and motor adaptation. , 2009, , .		16
72	On the development of objective metrics for surgical skills evaluation based on tool motion. , 2014, , .		16

#	Article	IF	Citations
73	On the Ability of Humans to Haptically Identify and Discriminate Real and Simulated Objects. Presence: Teleoperators and Virtual Environments, 2005, 14, 366-376.	0.3	15
74	The RiceWrist: A Distal Upper Extremity Rehabilitation Robot for Stroke Therapy., 2006, , 1437.		15
75	Discrimination of consonant articulation location by tactile stimulation of the forearm., 2010,,.		15
76	Design and characterization of a haptic paddle for dynamics education. , 2014, , .		15
77	Maintaining subject engagement during robotic rehabilitation with a minimal assist-as-needed (mAAN) controller., 2017, 2017, 62-67.		15
78	System characterization of RiceWrist-S: A forearm-wrist exoskeleton for upper extremity rehabilitation., 2013, 2013, 6650462.		14
79	Flexible robotics with electromagnetic tracking improves safety and efficiency during inÂvitro endovascular navigation. Journal of Vascular Surgery, 2017, 65, 530-537.	0.6	14
80	Design, Control, and Psychophysics of Tasbi: A Force-Controlled Multimodal Haptic Bracelet. IEEE Transactions on Robotics, 2022, 38, 2962-2978.	7.3	14
81	Identifying Successful Motor Task Completion via Motion-Based Performance Metrics. IEEE Transactions on Human-Machine Systems, 2014, 44, 139-145.	2.5	13
82	Comparison of robotic and clinical motor function improvement measures for sub-acute stroke patients. , 2008, , .		12
83	Adaptive control of a serial-in-parallel robotic rehabilitation device., 2013, 2013, 6650412.		12
84	The role of auxiliary and referred haptic feedback in myoelectric control. , 2015, , .		12
85	Combining functional electrical stimulation and a powered exoskeleton to control elbow flexion. , 2017, , .		12
86	Effects of discretization on the K-width of series elastic actuators., 2017,,.		12
87	Toward improved surgical training: Delivering smoothness feedback using haptic cues. , 2018, , .		12
88	The rice haptic rocker: Altering the perception of skin stretch through mapping and geometric design. , 2018, , .		12
89	Expert Surgeons Can Smoothly Control Robotic Tools With a Discrete Control Interface. IEEE Transactions on Human-Machine Systems, 2019, 49, 388-394.	2.5	12
90	Quantitative Testing of fMRI-Compatibility of an Electrically Active Mechatronic Device for Robot-Assisted Sensorimotor Protocols. IEEE Transactions on Biomedical Engineering, 2018, 65, 1595-1606.	2.5	11

#	Article	IF	CITATIONS
91	Enabling Robots to Infer How End-Users Teach and Learn Through Human-Robot Interaction. IEEE Robotics and Automation Letters, 2019, 4, 1956-1963.	3.3	11
92	Improved Haptic Fidelity Via Reduced Sampling Period With an FPGA-Based Real-Time Hardware Platform. Journal of Computing and Information Science in Engineering, 2009, 9, .	1.7	10
93	Long-term double integration of acceleration for position sensing and frequency domain system identification. , $2010, , .$		10
94	On the performance of passivity-based control of haptic displays employing levant's differentiator for velocity estimation., 2012 ,,.		10
95	A model matching framework for the synthesis of series elastic actuator impedance control. , 2014, , .		10
96	Tactile feedback of object slip improves performance in a grasp and hold task. , 2014, , .		10
97	A Method for Selecting Velocity Filter Cut-Off Frequency for Maximizing Impedance Width Performance in Haptic Interfaces. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2015, 137, .	0.9	10
98	On the Efficacy of Isolating Shoulder and Elbow Movements with a Soft, Portable, and Wearable Robotic Device. Biosystems and Biorobotics, 2017, , 89-93.	0.2	10
99	Passive and Active Discrimination of Natural Frequency of Virtual Dynamic Systems. IEEE Transactions on Haptics, 2009, 2, 40-51.	1.8	9
100	Visual versus haptic progressive guidance for training in a virtual dynamic task., 2009,,.		9
101	Characterization of a hand-wrist exoskeleton, READAPT, via kinematic analysis of redundant pointing tasks. , 2015, , .		9
102	Separating haptic guidance from task dynamics: A practical solution via cutaneous devices. , 2018, , .		9
103	Compact and low-cost tendon vibrator for inducing proprioceptive illusions. , 2009, , .		8
104	Design of a low-cost series elastic actuator for multi-robot manipulation. , 2011, , .		8
105	Reconstructing surface EMG from scalp EEG during myoelectric control of a closed looped prosthetic device., 2013, 2013, 5602-5.		8
106	A pre-clinical framework for neural control of a therapeutic upper-limb exoskeleton., 2013,, 1159-1162.		8
107	White matter changes in corticospinal tract associated with improvement in arm and hand functions in incomplete cervical spinal cord injury: pilot case series. Spinal Cord Series and Cases, 2017, 3, 17028.	0.3	8
108	Effect of Interference on Multi-Sensory Haptic Perception of Stretch and Squeeze., 2019,,.		8

#	Article	IF	CITATIONS
109	Myoelectric control and neuromusculoskeletal modeling: Complementary technologies for rehabilitation robotics. Current Opinion in Biomedical Engineering, 2021, 19, 100313.	1.8	8
110	Effects of magnitude and phase cues on human motor adaptation. , 2009, , .		7
111	Validation of a smooth movement model for a human reaching task. , 2009, , .		7
112	Dynamic displacement sensing, system identification, and control of a speaker-based tendon vibrator via accelerometers. IEEE/ASME Transactions on Mechatronics, 2013, 18, 812-817.	3.7	7
113	A cable-based series elastic actuator with conduit sensor for wearable exoskeletons. , 2017, , .		7
114	Characterization of surface electromyography patterns of healthy and incomplete spinal cord injury subjects interacting with an upper-extremity exoskeleton., 2017, 2017, 164-169.		7
115	The Rice Haptic Rocker: Comparing Longitudinal and Lateral Upper-Limb Skin Stretch Perception. Lecture Notes in Computer Science, 2018, , 125-134.	1.0	7
116	Functionally biarticular control for smart prosthetics. , 2009, , .		6
117	Analysis and comparison of low cost gaming controllers for motion analysis. , 2010, , .		6
118	Estimating anatomical wrist joint motion with a robotic exoskeleton., 2017, 2017, 1437-1442.		6
119	Toward training surgeons with motion-based feedback: Initial validation of smoothness as a measure of motor learning. Proceedings of the Human Factors and Ergonomics Society, 2017, 61, 1531-1535.	0.2	6
120	Reflection on System Dynamics Principles Improves Student Performance in Haptic Paddle Labs. IEEE Transactions on Education, 2018, 61, 245-252.	2.0	6
121	A Cutaneous Haptic Cue Characterization Testbed. , 2019, , .		6
122	Importance of Wrist Movement Direction in Performing Activities of Daily Living Efficiently., 2020, 2020, 3174-3177.		6
123	In the Fundamentals of Endovascular and Vascular Surgery model motion metrics reliably differentiate competency. Journal of Vascular Surgery, 2020, 72, 2161-2165.	0.6	6
124	Effect of Tactile Masking on Multi-Sensory Haptic Perception. IEEE Transactions on Haptics, 2022, 15, 212-221.	1.8	6
125	Improved Haptic Fidelity via Reduced Sampling Period With an FPGA-Based Real-Time Hardware Platform. , 2007, , .		5
126	Interaction Control for Rehabilitation Robotics via a Low-Cost Force Sensing Handle., 2013,,.		5

#	Article	IF	Citations
127	Single limb cable driven wearable robotic device for upper extremity movement support after traumatic brain injury. Journal of Rehabilitation and Assistive Technologies Engineering, 2021, 8, 205566832110024.	0.6	5
128	The SE-AssessWrist for robot-aided assessment of wrist stiffness and range of motion: Development and experimental validation. Journal of Rehabilitation and Assistive Technologies Engineering, 2021, 8, 205566832098577.	0.6	5
129	Effect of Robotic Exoskeleton Motion Constraints on Upper Limb Muscle Synergies: A Case Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 2086-2095.	2.7	5
130	A Textile-Based Approach to Wearable Haptic Devices. , 2022, , .		5
131	Intermittency of slow arm movements increases in distal direction. , 2009, , .		4
132	Implementing Haptic Feedback Environments from High-Level Descriptions. , 2009, , .		4
133	A low cost vibrotactile array to manage respiratory motion. , 2009, , .		4
134	Effect of progressive visual error amplification on human motor adaptation., 2011, 2011, 5975399.		4
135	Motor Skill Acquisition in a Virtual Gaming Environment. Proceedings of the Human Factors and Ergonomics Society, 2011, 55, 2148-2152.	0.2	4
136	Compliant force-feedback actuation for accurate robot-mediated sensorimotor interaction protocols during fMRI. , 2014, , .		4
137	Vary Slow Motion: Effect of Task Forces on Movement Variability and Implications for a Novel Skill Augmentation Mechanism. IEEE Robotics and Automation Magazine, 2014, 21, 115-122.	2.2	4
138	Improving the retention of motor skills after reward-based reinforcement by incorporating haptic guidance and error augmentation. , 2016, , .		4
139	The effect of robot dynamics on smoothness during wrist pointing. , 2017, 2017, 597-602.		4
140	Design of an assistive, glove-based exoskeleton., 2017,,.		4
141	Spatially Separated Cutaneous Haptic Guidance for Training of a Virtual Sensorimotor Task. , 2020, , .		4
142	Evaluating the Effect of Stimulus Duration on Vibrotactile Cue Localizability With a Tactile Sleeve. IEEE Transactions on Haptics, 2021, 14, 328-334.	1.8	4
143	Snaptics: Low-Cost Open-Source Hardware for Wearable Multi-Sensory Haptics. , 2021, , .		4
144	Disturbance Observer Based Closed Loop Force Control for Haptic Feedback., 2007,,.		4

#	Article	IF	CITATIONS
145	Passive and Active Kinesthetic Perception Just-noticeable-difference for Natural Frequency of Virtual Dynamic Systems., 2008,,.		3
146	Interaction Control of a Non-Backdriveable MR-Compatible Actuator Through Series Elasticity. , 2013, , .		3
147	Proportional sEMG Based Robotic Assistance in an Isolated Wrist Movement. , 2015, , .		3
148	A Ball and Beam Module for a Haptic Paddle Education Platform. , 2017, , .		3
149	A Bowden Cable-Based Series Elastic Actuation Module for Assessing the Human Wrist. , 2018, , .		3
150	Haptic Feedback Based on Movement Smoothness Improves Performance in a Perceptual-Motor Task. IEEE Transactions on Haptics, 2022, 15, 382-391.	1.8	3
151	Design of a Haptic Arm Exoskeleton for Training and Rehabilitation. , 2004, , 1011.		2
152	Shared Control for Upper Extremity Rehabilitation in Virtual Environments., 2005,, 1673.		2
153	Co-presentation of force cues for skill transfer via shared-control systems. , 2010, , .		2
154	Work in progress & amp; $\pm x2014$; Implementing and evaluating efforts to engage interdisciplinary teams to solve real-world design challenges., 2011 ,,.		2
155	Rate of human motor adaptation under varying system dynamics. , 2011, , .		2
156	Modeling Basic Aspects of Cyber-Physical Systems, Part II (Extended Abstract)., 2014,,.		2
157	Design of a parallel-group balanced controlled trial to test the effects of assist-as-needed robotic therapy. , 2015, , .		2
158	Cycloidal Geartrain In-Use Efficiency Study. , 2018, , .		2
159	Velocity-Domain Motion Quality Measures for Surgical Performance Evaluation and Feedback. Journal of Medical Devices, Transactions of the ASME, 2021, 15, .	0.4	2
160	A Lyapunov Approach for SOSM Based Velocity Estimation and Its Application to Improve Bilateral Teleoperation Performance. , $2011, \ldots$		2
161	Human-Scale Motion Capture with an Accelerometer-Based Gaming Controller. Journal of Robotics and Mechatronics, 2013, 25, 458-465.	0.5	2
162	Design and Characterization of a Passive Instrumented Hand. ASME Letters in Dynamic Systems and Control, 2021, 1 , .	0.4	2

#	Article	IF	Citations
163	Towards Automated Performance Assessment using Velocity-based Motion Quality Metrics. , 2020, , .		2
164	Current Challenges in the Control of Haptic Interfaces and Bilateral Teleoperation Systems. , 2003, , 743.		1
165	Special Issue on Novel Robotics and Control. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2006, 128, 1-2.	0.9	1
166	A Preliminary ACT-R Model of a Continuous Motor Task. Proceedings of the Human Factors and Ergonomics Society, 2010, 54, 1037-1041.	0.2	1
167	On the correlation between motion data captured from low-cost gaming controllers and high precision encoders., 2012, 2012, 4529-32.		1
168	A bio-inspired algorithm for identifying unknown kinematics from a discrete set of candidate models by using collision detection. , 2016 , , .		1
169	Closure to "Discussion of â€~A Review of Intent Detection, Arbitration, and Communication Aspects of Shared Control for Physical Human–Robot Interactionâ€â€™ (Losey, D. P., McDonald, C. G., Battaglia, E.,) Tj E	ΓQ 4. 510.7	78 4 314 rgBT
170	Improving short-term retention after robotic training by leveraging fixed-gain controllers. Journal of Rehabilitation and Assistive Technologies Engineering, 2019, 6, 205566831986631.	0.6	1
171	The Influence of Cue Presentation Velocity on Skin Stretch Perception. , 2019, , .		1
172	Effects of Interfering Cue Separation Distance and Amplitude on the Haptic Detection of Skin Stretch. IEEE Transactions on Haptics, 2021, 14, 254-259.	1.8	1
173	Electromyographic Classification to Control the SPAR Glove. IFAC-PapersOnLine, 2021, 54, 244-250.	0.5	1
174	Comparing Manual and Robotic-Assisted Carotid Artery Stenting Using Motion-Based Performance Metrics., 2021, 2021, 1388-1391.		1
175	Towards Just Noticeable Differences for Natural Frequency of Manually Excited Virtual Dynamic Systems., 2007,,.		0
176	Special Issue on Haptics, Tactile and Multimodal Interfaces. Journal of Computing and Information Science in Engineering, 2009, 9, .	1.7	0
177	Message from the symposium chairs. , 2012, , .		0
178	A Method for Selecting Velocity Filter Cutoff Frequency for Maximizing Impedance Width Performance in Haptic Interfaces. , $2013,\ldots$		0
179	Message from the symposium chairs. , 2014, , .		0
180	A Robotic Platform for 3D Forelimb Rehabilitation with Rats. , 2019, 2019, 429-434.		0

#	Article	IF	CITATIONS
181	Transparency Extension in Haptic Interfaces via Adaptive Dynamics Cancellation., 2005,,.		0
182	Virtual Lab for System Identification of an Electromechanical System. , 2005, , .		0
183	Vision Based Force Sensing for Nanorobotic Manipulation. , 2006, , .		o
184	Experimental System Identification of Force Reflecting Hand Controller. , 2006, , .		0
185	A Fully Automated System for the Preparation of Samples for Cryo-Electron Microscopy. , 2010, , .		O