Ya-Fei Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4101465/publications.pdf

Version: 2024-02-01

		623734	642732
52	697	14	23
papers	citations	h-index	23 g-index
			604
53	53	53	684
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Metal-free directed Câ^'H borylation of 2-(N-methylanilino)-5-fluoropyridines and 2-benzyl-5-fluoropyridines. Chinese Chemical Letters, 2022, 33, 2005-2008.	9.0	11
2	Rhodium(iii)-catalyzed cascade C–H functionalization/annulation of sulfoximines with iodonium ylides for the synthesis of cyclohexanone-1,2-benzothiazines. Organic and Biomolecular Chemistry, 2022, 20, 887-894.	2.8	8
3	Ligand-Enabled C–H Olefination and Lactonization of Benzoic Acids and Phenylacetic Acids via Palladium Catalyst. Organic Letters, 2022, 24, 821-825.	4.6	4
4	Xiaoyaosan ethyl acetate fraction alleviates depression-like behaviors in CUMS mice by promoting hippocampal neurogenesis via modulating the IGF- $1\mathrm{R}\hat{I}^2/\mathrm{PI3K/Akt}$ signaling pathway. Journal of Ethnopharmacology, 2022, 288, 115005.	4.1	20
5	Metal-Free Boron-Mediated <i>ortho</i> -C–H Hydroxylation of <i>N</i> -Benzyl-3,4,5-tribromopyrazoles. Organic Letters, 2022, 24, 3570-3575.	4.6	12
6	Cascade Access to Carboline Carboxylates from Indolyl Ketoximes and Acrylates via Palladium-Catalyzed C–H Bond Alkenylation/Annulation. Synlett, 2021, 32, 69-74.	1.8	1
7	Metal-Free <i>ortho</i> -Selective C–H Borylation of 2-Phenylthiopyridines Using BBr ₃ . Journal of Organic Chemistry, 2021, 86, 5933-5942.	3.2	14
8	Palladium-Catalyzed β-C(sp3)–H Arylation of Aliphatic Ketones Enabled by a Transient Directing Group. Journal of Organic Chemistry, 2021, 86, 7296-7303.	3.2	8
9	Extraction, purification, structural characteristics and biological properties of the polysaccharides from Codonopsis pilosula: A review. Carbohydrate Polymers, 2021, 261, 117863.	10.2	94
10	Ruthenium(II)-Catalyzed α-Fluoroalkenylation of Oxime Ethers with ⟨i⟩gem⟨/i⟩-Difluorostyrenes ⟨i⟩via⟨/i⟩ C–H Activation and C–F Cleavage. Journal of Organic Chemistry, 2020, 85, 12670-12681.	3.2	15
11	C–H Borylation of Diphenylamines through Adamantane-1-carbonyl Auxiliary by BBr ₃ . Organic Letters, 2020, 22, 7003-7007.	4.6	19
12	Juglans mandshurica Maxim.: A Review of Its Traditional Usages, Phytochemical Constituents, and Pharmacological Properties. Frontiers in Pharmacology, 2020, 11, 569800.	3 . 5	17
13	Rhodium(<scp>iii</scp>)-catalyzed C4-amidation of indole-oximes with dioxazolones <i>via</i> C–H activation. Organic and Biomolecular Chemistry, 2020, 18, 7922-7931.	2.8	10
14	Cascade Reaction for the Synthesis of Carbolines from <i>O</i> àêMethylketoximes and Styrenes via Palladiumâ€Catalyzed Câ€"H Activation and Sequential Annulation. European Journal of Organic Chemistry, 2019, 2019, 5974-5977.	2.4	16
15	Copper-mediated direct thiolation of aryl C–H bonds with disulfides. Organic and Biomolecular Chemistry, 2019, 17, 7055-7065.	2.8	3
16	Tandem C–C/C–N Formation via Palladium-Catalyzed C–H Activation/Styrenation and Sequential Annulation of <i>O</i> -Methylketoxime with Styrenes. Organic Letters, 2019, 21, 3505-3509.	4. 6	35
17	Palladium-catalyzed late-stage mono-aroylation of the fully substituted pyrazoles via aromatic C–H bond activation. Chinese Chemical Letters, 2019, 30, 702-706.	9.0	8
18	Palladium-Catalyzed Csp3â€"H Bond mono-Aroyloxylation of O-Alkyl Substituted 2,4,6-Trimethoxybenzaldoxime Ethers. Synlett, 2018, 29, 1249-1255.	1.8	1

#	Article	IF	CITATIONS
19	Palladium-catalyzed direct <i>mono</i> -aroylation of <i>O</i> -arylmethyl and aryl-substituted acetoxime ethers. Organic and Biomolecular Chemistry, 2018, 16, 6284-6294.	2.8	4
20	Palladium-Catalyzed Arylation of Aromatic Amides Directed by a [4-Chloro-2-(1H-pyrazol-1-yl)phenyl]amine Auxiliary. Synlett, 2018, 29, 1875-1880.	1.8	9
21	Catalytic Cascade Access to Biarylâ€2â€Methyl Acetates from Pyruvate <i>O</i> â€Arylmethyl Ketoximes <i>via</i> the Palladium atalyzed C(<i>sp</i> ²)H Bond Arylation and Câ^O Bond Solvolysis. Advanced Synthesis and Catalysis, 2018, 360, 2925-2937.	4.3	7
22	Palladiumâ€Catalyzed Divergent Regioselective Homocoupling and Hydroxylation of 3â€Arylbenzo[⟨i⟩d⟨/i⟩]isoxazoles. Advanced Synthesis and Catalysis, 2017, 359, 410-418.	4.3	16
23	Palladium-catalyzed site-selective direct olefination of 6-electron-withdrawing group substituted 3-arylbenzo[d]isoxazoles. Organic Chemistry Frontiers, 2017, 4, 1962-1966.	4.5	6
24	Oneâ€Pot Synthesis of Highly Substituted 1 <i>H</i> à€Pyrazoleâ€5â€carboxylates from 4â€Arylâ€2,4â€diketoes Arylhydrazines. Journal of Heterocyclic Chemistry, 2016, 53, 840-848.	ters and	7
25	Pdâ€Catalyzed Lateâ€Stage Monoacetoxylation and Monoiodination of 4â€Alkylâ€1,5â€diarylâ€1 <i>H</i> à€pyrazoleâ€3â€carboxylates via Direct Csp ² â^'H Bond Acti Journal of Organic Chemistry, 2016, 5, 499-505.	va ti øn. As	ia 1 4
26	Palladium atalyzed Diverse <i>mono</i> â€Acyloxylation of 5â€Alkylâ€4â€arylâ€thiazoleâ€2 arboxylates. A Journal of Organic Chemistry, 2016, 5, 1219-1224.	sian 2.7	11
27	Pd-catalyzed direct oxidative mono-aroyloxylation of O-aralkyl substituted acetoxime ethers. RSC Advances, 2016, 6, 78875-78880.	3. 6	11
28	Palladium-catalyzed multi-acetoxylation of 1,3-disubstituted 1H-pyrazole-5-carboxylates via direct C(sp2)H or C(sp3)H bond activation. Chinese Chemical Letters, 2016, 27, 1617-1621.	9.0	9
29	A practical ligand-free copper(I) bromide-catalyzed fluoroalkoxylation of unactivated aryl bromides. Research on Chemical Intermediates, 2016, 42, 2525-2537.	2.7	2
30	Undecorated Cu(OAc) ₂ atalyzed C(sp ³)–C(sp ³) Bond Formation through <i>para</i> â€Hydroxy Group Triggered Remote Benzylic C(sp ³)–H Bond Functionalization. European Journal of Organic Chemistry, 2015, 2015, 5334-5338.	2.4	5
31	An eco-friendly Co(OAc)2-catalyzed aerobic oxidation of 4-benzylphenols into 4-hydroxybenzophenones. Research on Chemical Intermediates, 2015, 41, 7115-7124.	2.7	3
32	A ligand-free, powerful, and practical method for methoxylation of unactivated aryl bromides by use of the CuCl/HCOOMe/MeONa/MeOH system. Research on Chemical Intermediates, 2015, 41, 8651-8664.	2.7	4
33	Copper(II)-Catalyzed Oxidative Esterification of Substituted p-Cresols under Ligand- and Additive-Free Conditions. Synlett, 2015, 26, 2145-2150.	1.8	16
34	Practical Ligandâ€Free Copperâ€Catalysed Shortâ€Chain Alkoxylation of Unactivated Aryl Bromides. European Journal of Organic Chemistry, 2015, 2015, 4744-4755.	2.4	15
35	Efficient Co(OAc)2-catalyzed aerobic oxidation of EWG-substituted 4-cresols to access 4-hydroxybenzaldehydes. Tetrahedron Letters, 2014, 55, 1406-1411.	1.4	16
36	Environmentally Friendly and Highly Efficient Co(OAc) ₂ -Catalyzed Aerobic Oxidation to Access 2,6-Di-Electron-Donating Group Substituted 4-Hydroxybenzaldehydes. Synthetic Communications, 2014, 44, 1430-1440.	2.1	3

#	Article	IF	CITATIONS
37	An Efficient Oneâ€pot Synthesis of Arylâ€substituted 1â€(Thiazolâ€2â€yl)â€1 <i>H</i> àâ€pyrazoleâ€3â€carboxyla Hantzsch Synthesisâ€Knorr Reaction Sequence. Chinese Journal of Chemistry, 2014, 32, 179-190.	tęs via a 4.9	12
38	Cu(OAc) ₂ -catalyzed remote benzylic C(sp ³)â€"H oxyfunctionalization for Cî€O formation directed by the hindered para-hydroxyl group with ambient air as the terminal oxidant under ligand- and additive-free conditions. Green Chemistry, 2014, 16, 1248-1254.	9.0	40
39	A highly efficient approach to vanillin starting from 4-cresol. Green Chemistry, 2014, 16, 2807.	9.0	36
40	Concurrent synthesis of vanillin and isovanillin. Research on Chemical Intermediates, 2013, 39, 2849-2856.	2.7	35
41	A Oneâ€pot Approach to Ethyl 1,4,5â€Triarylâ€1 <i>H</i> à€pyrazoleâ€3â€carboxylates via an Improved Claisen Condensationâ€Knorr Reaction Sequence. Chinese Journal of Chemistry, 2013, 31, 1526-1538.	4.9	8
42	Stereoselective or Exclusive Synthesis of Ethyl (Z)-2-(2-Substituted-thiazol-4-yl)pent-2-enoates from Ethyl (E/Z)-2-(2-Bromoacetyl)pent-2-enoate. Synlett, 2013, 24, 1399-1404.	1.8	5
43	\hat{a} errone-pot \hat{a} erronger synthesis of 4-substituted 1,5-diaryl-1H-pyrazole-3-carboxylates via lithium tert-butoxide-mediated sterically hindered Claisen condensation and Knorr reaction. Tetrahedron, 2013, 69, 627-635.	1.9	28
44	Practical Preparation of Trimethoprim: A Classical Antibacterial Agent. Synthetic Communications, 2013, 43, 1517-1522.	2.1	11
45	Alternate Synthesis of Apixaban (BMS-562247), an Inhibitor of Blood Coagulation Factor Xa. Synthetic Communications, 2013, 43, 72-79.	2.1	23
46	An Efficient Strategy for Protecting Dihydroxyl Groups of Catechols. Synlett, 2013, 24, 741-746.	1.8	5
47	"One-Pot―Synthesis of 4-Substituted 1,5-Diaryl-1H-pyrazole-3-carboxylic Acids via a MeONa/LiCl-Mediated Sterically Hindered Claisen Condensation–Knorr Reaction–Hydrolysis Sequence. Synlett, 2012, 23, 2965-2968.	1.8	14
48	Organocatalytic enantioselective Michael addition reactions of fluoromalonates with \hat{l}_{\pm},\hat{l}^2 -unsaturated aldehydes. Science China Chemistry, 2010, 53, 135-139.	8.2	6
49	SOLID-PHASE SYNTHESIS OF DIFLUOROBENZIMIDAZOLES AND DIFLUORO-2-QUINOXALINOLS. Organic Preparations and Procedures International, 2007, 39, 591-602.	1.3	1
50	Practical Synthesis of 2,3,4,5â€Tetramethoxytoluene. Synthetic Communications, 2006, 36, 1961-1965.	2.1	11
51	A HIGH YIELD, SELECTIVE SYNTHESIS OF 1,3,5-TRIMETHOXYBENZENE. Organic Preparations and Procedures International, 2003, 35, 225-227.	1.3	3
52	Rhodium(III) atalyzed Cascade Câ^'H Activation/Annulation of N arbamoylindoles with Silyl Enol Ethers for the Construction of Dihydropyrimidoindolone Skeletons. Asian Journal of Organic Chemistry, 0, , .	2.7	4