M Janete Giz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4101210/publications.pdf

Version: 2024-02-01

279798 289244 1,795 42 23 40 h-index citations g-index papers 42 42 42 1981 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Ethylene glycol oxidation on carbon supported binary PtM (MÂ=ÂRh, Pd an Ni) electrocatalysts in alkaline media. Journal of Electroanalytical Chemistry, 2021, 880, 114859.	3.8	11
2	How decoration with Tl affects CO electro-oxidation on Pd $(1\ 0\ 0)$ nanocubes: In situ FTIR and ab-initio insights. Journal of Electroanalytical Chemistry, 2021, 886, 115149.	3.8	6
3	Two-step synthesis of Ir-decorated Pd nanocubes and their impact on the glycerol electrooxidation. Journal of Catalysis, 2019, 377, 358-366.	6.2	19
4	Electro-oxidation of ethanol on PtRh surfaces partially covered by Sn. Electrochimica Acta, 2019, 308, 167-173.	5.2	10
5	How the adsorption of Sn on Pt (100) preferentially oriented nanoparticles affects the pathways of glycerol electro-oxidation. Electrochimica Acta, 2019, 297, 61-69.	5.2	11
6	The electrooxidation of acetaldehyde on platinum–ruthenium–rhodium surfaces: A delicate balance between oxidation and carbon–carbon bond breaking. Journal of Electroanalytical Chemistry, 2016, 765, 73-78.	3.8	5
7	Oxidation of isotopically-labeled ethanol on platinum–tin–rhodium surfaces: Enhancing the production of CO2 from methyl groups. Electrochemistry Communications, 2014, 48, 160-163.	4.7	7
8	Ethanol electro-oxidation on partially alloyed Pt-Sn-Rh/C catalysts. Electrochimica Acta, 2014, 147, 483-489.	5.2	47
9	Analysis of the selectivity of PtRh/C and PtRhSn/C to the formation of CO2 during ethanol electrooxidation. Electrochimica Acta, 2013, 112, 612-619.	5.2	35
10	Insights into the adsorption and electro-oxidation of glycerol: Self-inhibition and concentration effects. Journal of Catalysis, 2013, 301, 154-161.	6.2	78
11	Influence of the local pH on the electrooxidation of glycerol on Palladium–Rhodium electrodeposits. Journal of Electroanalytical Chemistry, 2013, 697, 15-20.	3.8	50
12	PtSnCe/C electrocatalysts for ethanol oxidation: DEFC and FTIR "in-situ―studies. International Journal of Hydrogen Energy, 2011, 36, 11519-11527.	7.1	55
13	Rhodium in presence of platinum as a facilitator of carbon–carbon bond break: A composition study. Electrochimica Acta, 2011, 56, 1337-1343.	5.2	26
14	Generation of carbon dioxide from glycerol: Evidences of massive production on polycrystalline platinum. Electrochimica Acta, 2011, 56, 4549-4553.	5.2	61
15	Search for multi-functional catalysts: The electrooxidation of acetaldehyde on Platinum–Ruthenium–Rhodium electrodeposits. Journal of Electroanalytical Chemistry, 2011, 660, 85-90.	3.8	6
16	PtSnCe/C and PtSnIr/C Electrocatalysts for Ethanol Oxidation: DEFC and In Situ FTIR studies. ECS Transactions, 2011, 41, 1293-1298.	0.5	1
17	Methanol electrooxidation at aged PtRu electrodeposits as an approach to understand the effects of time. Journal of Power Sources, 2010, 195, 7221-7224.	7.8	2
18	The ethanol electrooxidation reaction at Pt (111): The effect of ethanol concentration. Journal of Electroanalytical Chemistry, 2009, 625, 117-122.	3.8	57

#	Article	IF	Citations
19	The ethanol electrooxidation reaction at rough PtRu electrodeposits: A FTIRS study. Electrochemistry Communications, 2009, 11, 1586-1589.	4.7	20
20	A topographic view of the $Pt(111)$ surface at the electrochemical interface in the presence of carbon monoxide. Electrochemistry Communications, 2007, 9, 1083-1085.	4.7	5
21	Electrochemical performance of dispersed Pt-M (M =V, Cr and Co) nanoparticles for the oxygen reduction electrocatalysis. Journal of the Brazilian Chemical Society, 2005, 16, 328-336.	0.6	62
22	Effects of geometric and electronic factors on ORR activity of carbon supported Pt–Co electrocatalysts in PEM fuel cells. International Journal of Hydrogen Energy, 2005, 30, 1213-1220.	7.1	188
23	Studies of carbon monoxide oxidation on carbon-supported platinum-osmium electrocatalysts. Journal of Solid State Electrochemistry, 2003, 7, 607-613.	2.5	18
24	Electrochemical and physical characterization of Ni-Cu-Fe alloy for chlor-alkali hydrogen cathodes. Ecletica Quimica, 2003, 28, 21-28.	0.5	17
25	Spontaneous deposition of Ru on Pt (100): morphological and electrochemical studies. Preliminary results of ethanol oxidation at $Pt(100)/Ru$. Journal of the Brazilian Chemical Society, 2003, 14, 601-609.	0.6	18
26	The Electro-oxidation of Ethanol on Pt-Ru and Pt-Mo Particles Supported on High-Surface-Area Carbon. Journal of the Electrochemical Society, 2002, 149, A272.	2.9	162
27	Surface chemistry of the iron tetraazamacrocycle on the aminopropyl-modified surface of oxidized n-Si(100) by AFM and XPS. Surface and Interface Analysis, 2002, 33, 293-298.	1.8	42
28	Correlation of electrochemical and physical properties of PtRu alloy electrocatalysts for PEM fuel cells. Journal of Electroanalytical Chemistry, 2002, 537, 21-29.	3.8	100
29	The effect of Cd, Co, and Zn as additives on nickel hydroxide opto-electrochemical behavior. Journal of Power Sources, 2001, 102, 224-232.	7.8	71
30	Structure and properties of a nanocomposite formed by vanadium pentoxide containing poly(N-propane sulfonic acid aniline). Journal of Power Sources, 2001, 103, 113-119.	7.8	49
31	AFM morphological study of electropolymerised polyaniline films modified by surfactant and large anions. Electrochemistry Communications, 2000, 2, 377-381.	4.7	38
32	NiFeZn codeposit as a cathode material for the production of hydrogen by water electrolysis. International Journal of Hydrogen Energy, 2000, 25, 621-626.	7.1	53
33	In situ STM study of self-assembled mercaptopropionic acid monolayers for electrochemical detection of dopamine. Journal of Electroanalytical Chemistry, 1999, 465, 72-79.	3.8	174
34	A Study of the Hydrogen Evolution Reaction on a Ni/NiFeS Electrodeposited Coating. Journal of the Electrochemical Society, 1997, 144, 2794-2800.	2.9	52
35	An electrochemical impedance study on the kinetics and mechanism of the hydrogen evolution reaction on nickel molybdenite electrodes. Electrochimica Acta, 1997, 42, 951-959.	5.2	50
36	The hydrogen evolution reaction on amorphous nickel and cobalt alloys. International Journal of Hydrogen Energy, 1995, 20, 423-427.	7.1	47

#	Article	IF	CITATIONS
37	Mechanistic study of the hydrogen evolution reaction on Niî—,Coî—,Zn electrodes. Electrochimica Acta, 1994, 39, 1775-1779.	5.2	18
38	Mechanistic study of the hydrogen evolution reaction on Ni-Zn and Ni-S cathodes. Journal of Applied Electrochemistry, 1993, 23, 641-645.	2.9	24
39	High area Ni-Zn and Ni-Co-Zn codeposits as hydrogen electrodes in alkaline solutions. Journal of Applied Electrochemistry, 1992, 22, 973-977.	2.9	76
40	Progress on the development of activated cathodes for water electrolysis. International Journal of Hydrogen Energy, 1992, 17, 725-729.	7.1	22
41	Iridium-Based Catalysts for the Ethanol Electrooxidation in Acidic Media. Journal of the Brazilian Chemical Society, 0, , .	0.6	O
42	Ethylene Glycol Electro-Oxidation on Platinum-Free Surfaces: How the Composition of PdRuRh Surfaces Influences the Catalysis. Journal of the Brazilian Chemical Society, 0, , .	0.6	2