
Brian D Evavold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4100844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The magnitude of LFA-1/ICAM-1 forces fine-tune TCR-triggered T cell activation. Science Advances, 2022, 8, eabg4485.	4.7	36
2	Tuning T cell receptor sensitivity through catch bond engineering. Science, 2022, 376, eabl5282.	6.0	53
3	Localized hydrogel delivery of dendritic cells for attenuation of multiple sclerosis in a murine model. Journal of Biomedical Materials Research - Part A, 2021, 109, 1247-1255.	2.1	11
4	MHC class II tetramers engineered for enhanced binding to CD4 improve detection of antigen-specific T cells. Nature Biotechnology, 2021, 39, 943-948.	9.4	14
5	Canonical T cell receptor docking on peptide–MHC is essential for T cell signaling. Science, 2021, 372, .	6.0	53
6	Mechanobiology of T Cell Activation: To Catch a Bond. Annual Review of Cell and Developmental Biology, 2021, 37, 65-87.	4.0	27
7	Targeting transcriptional coregulator OCA-B/Pou2af1 blocks activated autoreactive T cells in the pancreas and type 1 diabetes. Journal of Experimental Medicine, 2021, 218, .	4.2	15
8	A Critical Insulin TCR Contact Residue Selects High-Affinity and Pathogenic Insulin-Specific T Cells. Diabetes, 2020, 69, 392-400.	0.3	6
9	An Engineered T Cell Receptor Variant Realizes the Limits of Functional Binding Modes. Biochemistry, 2020, 59, 4163-4175.	1.2	6
10	IL-21 from high-affinity CD4 T cells drives differentiation of brain-resident CD8 T cells during persistent viral infection. Science Immunology, 2020, 5, .	5.6	43
11	Relationship of 2D Affinity to T Cell Functional Outcomes. International Journal of Molecular Sciences, 2020, 21, 7969.	1.8	5
12	CD45RB Status of CD8+ T Cell Memory Defines T Cell Receptor Affinity and Persistence. Cell Reports, 2020, 30, 1282-1291.e5.	2.9	17
13	A Hybrid Insulin Epitope Maintains High 2D Affinity for Diabetogenic T Cells in the Periphery. Diabetes, 2020, 69, 381-391.	0.3	12
14	Discriminative T cell recognition of cross-reactive islet-antigens is associated with HLA-DQ8 transdimer–mediated autoimmune diabetes. Science Advances, 2019, 5, eaaw9336.	4.7	15
15	Understanding TCR affinity, antigen specificity, and cross-reactivity to improve TCR gene-modified T cells for cancer immunotherapy. Cancer Immunology, Immunotherapy, 2019, 68, 1881-1889.	2.0	25
16	Mechano-regulation of Peptide-MHC Class I Conformations Determines TCR Antigen Recognition. Molecular Cell, 2019, 73, 1015-1027.e7.	4.5	95
17	PD-1 Dynamically Regulates Inflammation and Development of Brain-Resident Memory CD8 T Cells During Persistent Viral Encephalitis. Frontiers in Immunology, 2019, 10, 783.	2.2	33
18	A TCR mechanotransduction signaling loop induces negative selection in the thymus. Nature Immunology, 2018, 19, 1379-1390.	7.0	112

BRIAN D EVAVOLD

#	Article	IF	CITATIONS
19	2D Kinetic Analysis of TCR and CD8 Coreceptor for LCMV GP33 Epitopes. Frontiers in Immunology, 2018, 9, 2348.	2.2	24
20	Differential IL-2 expression defines developmental fates of follicular versus nonfollicular helper T cells. Science, 2018, 361, .	6.0	173
21	CD4 T Cell Affinity Diversity Is Equally Maintained during Acute and Chronic Infection. Journal of Immunology, 2018, 201, 19-30.	0.4	19
22	Isolation of a Structural Mechanism for Uncoupling T Cell Receptor Signaling from Peptide-MHC Binding. Cell, 2018, 174, 672-687.e27.	13.5	229
23	Conserved Region C Functions To Regulate PD-1 Expression and Subsequent CD8 T Cell Memory. Journal of Immunology, 2017, 198, 205-217.	0.4	24
24	MHC Bias by T Cell Receptors: Genetic Evidence for MHC and TCR Coevolution. Trends in Immunology, 2017, 38, 2-4.	2.9	9
25	NFM Cross-Reactivity to MOG Does Not Expand a Critical Threshold Level of High-Affinity T Cells Necessary for Onset of Demyelinating Disease. Journal of Immunology, 2017, 199, 2680-2691.	0.4	5
26	Dual Molecular Mechanisms Govern Escape at Immunodominant HLA A2-Restricted HIV Epitope. Frontiers in Immunology, 2017, 8, 1503.	2.2	29
27	Low-affinity CD4+ T cells are major responders in the primary immune response. Nature Communications, 2016, 7, 13848.	5.8	63
28	DNA-based nanoparticle tension sensors reveal that T-cell receptors transmit defined pN forces to their antigens for enhanced fidelity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5610-5615.	3.3	256
29	Targeted loss of SHP1 in murine thymocytes dampens TCR signaling late in selection. European Journal of Immunology, 2016, 46, 2103-2110.	1.6	35
30	Ratiometric Tension Probes for Mapping Receptor Forces and Clustering at Intermembrane Junctions. Nano Letters, 2016, 16, 4552-4559.	4.5	65
31	Low-Affinity Memory CD8+ T Cells Mediate Robust Heterologous Immunity. Journal of Immunology, 2016, 196, 2838-2846.	0.4	41
32	Stepwise B-cell-dependent expansion of T helper clonotypes diversifies the T-cell response. Nature Communications, 2016, 7, 10281.	5.8	24
33	Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses. PLoS ONE, 2016, 11, e0149582.	1.1	11
34	Lower Affinity T Cells are Critical Components and Active Participants of the Immune Response. Frontiers in Immunology, 2015, 6, 468.	2.2	71
35	Identification of T cell clones without the need for sequencing. Journal of Immunological Methods, 2015, 424, 28-31.	0.6	7
36	Regulatory and T Effector Cells Have Overlapping Low to High Ranges in TCR Affinities for Self during Demyelinating Disease. Journal of Immunology, 2015, 195, 4162-4170.	0.4	15

BRIAN D EVAVOLD

#	Article	IF	CITATIONS
37	Cutting Edge: Resident Memory CD8 T Cells Express High-Affinity TCRs. Journal of Immunology, 2015, 195, 3520-3524.	0.4	77
38	Force-Regulated In Situ TCR–Peptide-Bound MHC Class II Kinetics Determine Functions of CD4+ T Cells. Journal of Immunology, 2015, 195, 3557-3564.	0.4	92
39	Progression of Relapsing-Remitting Demyelinating Disease Does Not Require Increased TCR Affinity or Epitope Spread. Journal of Immunology, 2014, 193, 4429-4438.	0.4	13
40	Accumulation of Dynamic Catch Bonds between TCR and Agonist Peptide-MHC Triggers T Cell Signaling. Cell, 2014, 157, 357-368.	13.5	487
41	TCR Affinity and Tolerance Mechanisms Converge To Shape T Cell Diabetogenic Potential. Journal of Immunology, 2014, 193, 571-579.	0.4	35
42	Accumulation of Serial Forces on TCR and CD8 Frequently Applied by Agonist Antigenic Peptides Embedded in MHC Molecules Triggers Calcium in T Cells. Journal of Immunology, 2014, 193, 68-76.	0.4	60
43	Insights from <i>in situ</i> analysis of TCR– <scp>pMHC</scp> recognition: response of an interaction network. Immunological Reviews, 2013, 251, 49-64.	2.8	66
44	Monitoring the Dynamics of T Cell Clonal Diversity Using Recombinant Peptide:MHC Technology. Frontiers in Immunology, 2013, 4, 170.	2.2	17
45	Estimating the Diversity, Completeness, and Cross-Reactivity of the T Cell Repertoire. Frontiers in Immunology, 2013, 4, 485.	2.2	150
46	Self-reactive human CD4 T cell clones form unusual immunological synapses. Journal of Experimental Medicine, 2012, 209, 335-352.	4.2	77
47	Insights into T Cell Recognition of Antigen: Significance of Two-Dimensional Kinetic Parameters. Frontiers in Immunology, 2012, 3, 86.	2.2	31
48	Low 2-Dimensional CD4 T Cell Receptor Affinity for Myelin Sets in Motion Delayed Response Kinetics. PLoS ONE, 2012, 7, e32562.	1.1	36
49	Two-Stage Cooperative T Cell Receptor-Peptide Major Histocompatibility Complex-CD8 Trimolecular Interactions Amplify Antigen Discrimination. Immunity, 2011, 34, 13-23.	6.6	172
50	High prevalence of low affinity peptide–MHC II tetramer–negative effectors during polyclonal CD4+ T cell responses. Journal of Experimental Medicine, 2011, 208, 81-90.	4.2	150
51	The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature, 2010, 464, 932-936.	13.7	451
52	Pathogenic MOG-reactive CD8+ T cells require MOG-reactive CD4+ T cells for sustained CNS inflammation during chronic EAE. Journal of Neuroimmunology, 2009, 213, 60-68.	1.1	28
53	Loss of IFN-Î ³ Enables the Expansion of Autoreactive CD4+ T Cells to Induce Experimental Autoimmune Encephalomyelitis by a Nonencephalitogenic Myelin Variant Antigen. Journal of Immunology, 2008, 180, 4451-4457.	0.4	48
54	MHC Variant Peptide-Mediated Anergy of Encephalitogenic T Cells Requires SHP-1. Journal of Immunology, 2008, 181, 6843-6849.	0.4	21

BRIAN D EVAVOLD

#	Article	IF	CITATIONS
55	Kinetics of MHC-CD8 Interaction at the T Cell Membrane. Journal of Immunology, 2007, 179, 7653-7662.	0.4	90
56	Regulation of Polyclonal T Cell Responses by an MHC Anchor-Substituted Variant of Myelin Oligodendrocyte Glycoprotein 35-55. Journal of Immunology, 2003, 171, 1247-1254.	0.4	38
57	Dissociation of peripheral T cell responses from thymocyte negative selection by weak agonists supports a spare receptor model of T cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4520-4525.	3.3	25
58	Persistence of Peptide-induced CD4+ T cell Anergy In Vitro. Journal of Experimental Medicine, 1998, 187, 89-96.	4.2	54
59	Induction of T-cell anergy by altered T-cell-receptor ligand on live antigen-presenting cells. Nature, 1993, 363, 156-159.	13.7	592