
A Jeffrey Giacomin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4100691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ongoing relevance of Oldroyd 8-constant fluids. Journal of Non-Newtonian Fluid Mechanics, 2022, 299, 104653.	2.4	3
2	General rigid bead-rod theory with hydrodynamic interaction for polymer viscoelasticity. Physics of Fluids, 2022, 34, .	4.0	12
3	Referee acknowledgment for 2021. Physics of Fluids, 2022, 34, 020201.	4.0	2
4	Complex viscosity of poly[n]catenanes including olympiadanes. Physics of Fluids, 2022, 34, .	4.0	4
5	Hydrodynamic interaction and complex viscosity of multi-bead rods. Physics of Fluids, 2022, 34, .	4.0	10
6	Coronavirus pleomorphism. Physics of Fluids, 2022, 34, .	4.0	6
7	10.1063/5.0094771.6. , 2022, , .		0
8	10.1063/5.0094771.2., 2022, , .		0
9	10.1063/5.0094771.5., 2022, , .		0
10	10.1063/5.0094771.4., 2022, , .		0
11	Large amplitude oscillatory shear flow: Microstructural assessment of polymeric systems. Progress in Polymer Science, 2022, 132, 101580.	24.7	27
12	Reinforcing polypropylene with graphene-polylactic acid microcapsules for fused-filament fabrication. Materials and Design, 2021, 198, 109329.	7.0	23
13	Referee acknowledgment for 2020. Physics of Fluids, 2021, 33, 020201.	4.0	3
14	Peplomer bulb shape and coronavirus rotational diffusivity. Physics of Fluids, 2021, 33, 033115.	4.0	19
15	Confinement and complex viscosity. Physics of Fluids, 2021, 33, .	4.0	8
16	Complex viscosity of graphene suspensions. Physics of Fluids, 2021, 33, 093109.	4.0	10
17	Complex viscosity of star-branched macromolecules from analytical general rigid bead-rod theory. Physics of Fluids, 2021, 33, 093111.	4.0	7
18	Cooling and annealing of plastic pipe. Thermal Science and Engineering Progress, 2021, 25, 100970.	2.7	0

#	Article	IF	CITATIONS
19	The complex viscosity of Möbius macromolecules. Physics of Fluids, 2020, 32, 093107.	4.0	5
20	Coronavirus rotational diffusivity. Physics of Fluids, 2020, 32, 113101.	4.0	32
21	Cole–Cole relation for long-chain branching from general rigid bead–rod theory. Physics of Fluids, 2020, 32, .	4.0	16
22	Diblock copolymer architecture and complex viscosity. International Journal of Modern Physics B, 2020, 34, 2040110.	2.0	8
23	Stress growth shearfree flow from the Oldroyd 8-constant framework. Physics of Fluids, 2020, 32, .	4.0	7
24	Large-amplitude oscillatory shear flow loops for long-chain branching from general rigid bead-rod theory. Physics of Fluids, 2020, 32, 053102.	4.0	16
25	Zero-shear viscosity of Fraenkel dumbbell suspensions. Physics of Fluids, 2020, 32, 063103.	4.0	5
26	Pattern method for higher harmonics from macromolecular orientation in oscillatory shear flow. Physics of Fluids, 2020, 32, 011703.	4.0	7
27	Referee acknowledgment for 2019. Physics of Fluids, 2020, 32, 020201.	4.0	4
28	Series expansion for normal stress differences in large-amplitude oscillatory shear flow from Oldroyd 8-constant framework. Physics of Fluids, 2020, 32, .	4.0	2
29	Pattern method for higher harmonics of first normal stress difference from molecular orientation in oscillatory shear flow. Physics of Fluids, 2020, 32, 031704.	4.0	5
30	Van Gurp–Palmen relations for long-chain branching from general rigid bead-rod theory. Physics of Fluids, 2020, 32, 033101.	4.0	18
31	Normal Stress Differences of Human Blood in Unidirectional Large-Amplitude Oscillatory Shear Flow. Journal of Fluids Engineering, Transactions of the ASME, 2020, 142, .	1.5	5
32	Unidirectional large-amplitude oscillatory shear flow of human blood. Physics of Fluids, 2019, 31, .	4.0	18
33	Macromolecular architecture and complex viscosity. Physics of Fluids, 2019, 31, .	4.0	46
34	Continuum mechanics of shear stress growth. AIP Conference Proceedings, 2019, , .	0.4	1
35	Hydrodynamic interaction for rigid dumbbell suspensions in steady shear flow. Physics of Fluids, 2019, 31, 053103.	4.0	11
36	Startup steady shear flow from the Oldroyd 8-constant framework. Physics of Fluids, 2019, 31, .	4.0	26

#	Article	IF	CITATIONS
37	Degradation in parallel-disk rheometry. Rheologica Acta, 2019, 58, 291-305.	2.4	1
38	Order in polymeric liquids under oscillatory shear flow. Physics of Fluids, 2019, 31, 033103.	4.0	29
39	Power series for normal stress differences of polymeric liquids in large-amplitude oscillatory shear flow. Physics of Fluids, 2019, 31, .	4.0	4
40	Referee acknowledgment for 2018. Physics of Fluids, 2019, 31, .	4.0	5
41	Exact coefficients for rigid dumbbell suspensions for steady shear flow material function expansions. Physics of Fluids, 2019, 31, 021212.	4.0	28
42	Macromolecular tumbling and wobbling in large-amplitude oscillatory shear flow. Physics of Fluids, 2019, 31, 021214.	4.0	11
43	Review of nonlinear oscillatory shear flow notations and presentations: polymeric liquids. Current Opinion in Colloid and Interface Science, 2019, 43, 26-38.	7.4	22
44	Complex viscosity of helical and doubly helical polymeric liquids from general rigid bead-rod theory. Physics of Fluids, 2019, 31, 111904.	4.0	11
45	Small-angle light scattering in large-amplitude oscillatory shear. Physics of Fluids, 2019, 31, 103104.	4.0	5
46	Orientation Distribution Function Pattern for Rigid Dumbbell Suspensions in Any Simple Shear Flow. Macromolecular Theory and Simulations, 2019, 28, 1800046.	1.4	9
47	Transport phenomena in bispherical coordinates. Physics of Fluids, 2019, 31, .	4.0	5
48	Exact solution for intrinsic nonlinearity in oscillatory shear from the corotational Maxwell fluid. Journal of Non-Newtonian Fluid Mechanics, 2019, 265, 53-65.	2.4	10
49	Referee Acknowledgment for 2017. Physics of Fluids, 2018, 30, 010201.	4.0	5
50	Exact solutions for oscillatory shear sweep behaviors of complex fluids from the Oldroyd 8-constant framework. Physics of Fluids, 2018, 30, .	4.0	35
51	Plastic pipe solidification in extrusion. Journal of Polymer Engineering, 2018, 38, 591-603.	1.4	1
52	Suppressing shrinkage/warpage of PBT injection molded parts with fillers. Polymer Composites, 2018, 39, 2377-2384.	4.6	9
53	Degradation in cone-plate rheometry. Review of Scientific Instruments, 2018, 89, 124101.	1.3	5
54	Thermodynamic instability of polymeric liquids in large-amplitude oscillatory shear flow from corotational Maxwell fluid. Fluid Dynamics Research, 2018, 50, 065505.	1.3	9

#	Article	IF	CITATIONS
55	Power series for shear stress of polymeric liquid in large-amplitude oscillatory shear flow. Korea Australia Rheology Journal, 2018, 30, 169-178.	1.7	6
56	Padé approximant for normal stress differences in large-amplitude oscillatory shear flow. Physics of Fluids, 2018, 30, 040910.	4.0	19
57	Molecular continua for polymeric liquids in large-amplitude oscillatory shear flow. Modern Physics Letters B, 2018, 32, 1840036.	1.9	11
58	Nonlinear core deflection in injection molding. Physics of Fluids, 2018, 30, 053102.	4.0	5
59	Exact Analytical Durometer Hardness Scale Interconversion. Journal of Testing and Evaluation, 2018, 46, 1995-2032.	0.7	2
60	10.1063/1.5027617.1., 2018,,.		0
61	Knuckle formation from melt elasticity in plastic pipe extrusion. Journal of Non-Newtonian Fluid Mechanics, 2017, 242, 11-22.	2.4	28
62	Referee Acknowledgment for 2016. Physics of Fluids, 2017, 29, .	4.0	5
63	Transport Phenomena in Eccentric Cylindrical Coordinates. AICHE Journal, 2017, 63, 3563-3581.	3.6	5
64	Polymer orientation contributions in large-amplitude oscillatory shear flow. Journal of Non-Newtonian Fluid Mechanics, 2017, 244, 85-103.	2.4	5
65	Exact analytical solution for large-amplitude oscillatory shear flow from Oldroyd 8-constant framework: Shear stress. Physics of Fluids, 2017, 29, .	4.0	67
66	Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow. Physics of Fluids, 2017, 29, .	4.0	37
67	Strain sweeps from Oldroyd 8-constant framework. , 2017, , .		4
68	Elastomers in large-amplitude oscillatory uniaxial extension. Rheologica Acta, 2017, 56, 955-970.	2.4	10
69	Exact-solution for cone-plate viscometry. Journal of Applied Physics, 2017, 122, 175101.	2.5	12
70	Simple Accurate Expressions for Shear Stress in Large-Amplitude Oscillatory Shear Flow. Nihon Reoroji Gakkaishi, 2017, 45, 251-260.	1.0	12
71	Macromolecular Origins of Fifth Shear Stress Harmonic in Large-Amplitude Oscillatory Shear Flow. Nihon Reoroji Gakkaishi, 2017, 44, 289-302.	1.0	24
72	Fluid Elasticity in Plastic Pipe Extrusion: Loads on Die Barrel. International Polymer Processing, 2017, 32, 648-658.	0.5	16

#	Article	IF	CITATIONS
73	Bubble growth from first principles. Canadian Journal of Chemical Engineering, 2016, 94, 1560-1575.	1.7	12
74	Temperature rise in a verging annular die. Journal of Polymer Engineering, 2016, 36, 735-750.	1.4	1
75	Molecular origins of higher harmonics in large-amplitude oscillatory shear flow: Shear stress response. Physics of Fluids, 2016, 28, .	4.0	22
76	Referee Acknowledgment for 2015. Physics of Fluids, 2016, 28, .	4.0	5
77	Polymer Fluid Dynamics: Continuum and Molecular Approaches. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 479-507.	6.8	46
78	Complex polymer orientation. Polymer, 2016, 104, 227-239.	3.8	10
79	Die Drool and Polymer Degradation. Polymer-Plastics Technology and Engineering, 2016, 55, 242-258.	1.9	1
80	Fourier decomposition of polymer orientation in large-amplitude oscillatory shear flow. Structural Dynamics, 2015, 2, 024101.	2.3	17
81	Die drool and polymer degradation. AIP Conference Proceedings, 2015, , .	0.4	ο
82	Reflections on inflections. Korea Australia Rheology Journal, 2015, 27, 267-285.	1.7	23
83	Wall slip heating. Polymer Engineering and Science, 2015, 55, 2042-2049.	3.1	6
84	Exact Analytical Solution for Largeâ€Amplitude Oscillatory Shear Flow. Macromolecular Theory and Simulations, 2015, 24, 352-392.	1.4	50
85	Orientation in Large-Amplitude Oscillatory Shear. Macromolecular Theory and Simulations, 2015, 24, 181-207.	1.4	18
86	Slip Heating in Die Drool with Viscous Dissipation. International Polymer Processing, 2015, 30, 141-146.	0.5	5
87	Slip heating in die drool. Canadian Journal of Chemical Engineering, 2015, 93, 580-589.	1.7	4
88	Padé approximants for large-amplitude oscillatory shear flow. Rheologica Acta, 2015, 54, 679-693.	2.4	19
89	Extruding plastic pipe from eccentric dies. Journal of Non-Newtonian Fluid Mechanics, 2015, 223, 176-199.	2.4	34
90	Large-amplitude oscillatory shear: comparing parallel-disk with cone-plate flow. Rheologica Acta, 2015, 54, 263-285.	2.4	32

#	Article	IF	CITATIONS
91	Normal stress differences in large-amplitude oscillatory shear flow for dilute rigid dumbbell suspensions. Journal of Non-Newtonian Fluid Mechanics, 2015, 222, 56-71.	2.4	32
92	A new dual-plate slipometer for measuring slip between molten polymers and extrusion die materials. Review of Scientific Instruments, 2014, 85, 045119.	1.3	2
93	Sag in commercial thermoforming. AICHE Journal, 2014, 60, 1529-1535.	3.6	5
94	Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response. Journal of Chemical Physics, 2014, 140, 074904.	3.0	66
95	Converging shear rheometer. Korea Australia Rheology Journal, 2014, 26, 127-139.	1.7	0
96	Temperature Rise in Large-Amplitude Oscillatory Shear Flow from Shear Stress Measurements. Industrial & Engineering Chemistry Research, 2013, 52, 2008-2017.	3.7	19
97	Die drool theory. Journal of Polymer Engineering, 2013, 33, 1-18.	1.4	13
98	Viscous dissipation in plastic pipe extrusion. Polymer Engineering and Science, 2013, 53, 2205-2218.	3.1	9
99	Corotating or Codeforming Models for Thermoforming: Free Forming. , 2013, , .		3
100	Die drool and die drool theory. , 2013, , .		0
101	Understanding Melt Index and ASTM D1238. Journal of Testing and Evaluation, 2013, 41, 20120161.	0.7	13
102	Viscoelasticity in thermoforming. Journal of Polymer Engineering, 2012, 32, 245-258.	1.4	11
103	Viscous heating in large-amplitude oscillatory shear flow. Physics of Fluids, 2012, 24, .	4.0	38
104	Who conceived the "complex viscosity�. Rheologica Acta, 2012, 51, 481-486.	2.4	55
105	Flexible blade coating. Journal of Coatings Technology Research, 2012, 9, 269-277.	2.5	9
106	3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels. Biomaterials, 2012, 33, 48-58.	11.4	158
107	Dimensionless Durometry. Polymer-Plastics Technology and Engineering, 2011, 50, 288-296.	1.9	8
108	Large-amplitude oscillatory shear flow from the corotational Maxwell model. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 1081-1099.	2.4	133

#	Article	IF	CITATIONS
109	Normal stress differences in large-amplitude oscillatory shear flow for the corotational "ANSR― model. Rheologica Acta, 2011, 50, 741-752.	2.4	32
110	Blotching in roll coating. Journal of Coatings Technology Research, 2011, 8, 67-74.	2.5	2
111	Sheet bowing in thermoforming. Polymer Engineering and Science, 2011, 51, 2571-2577.	3.1	1
112	Viscous dissipation of a power law fluid in axial flow between isothermal eccentric cylinders. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 133-144.	2.4	17
113	Core deflection in injection molding. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 908-914.	2.4	17
114	Transient shear flow behavior of concentrated long glass fiber suspensions in a sliding plate rheometer. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 884-895.	2.4	18
115	Core Deflection in Plastics Injection Molding: Direct Measurement, Flow Visualization and 3D Simulation. Polymer-Plastics Technology and Engineering, 2011, 50, 863-872.	1.9	12
116	Sheet temperature in thermoforming. Journal of Plastic Film and Sheeting, 2011, 27, 293-330.	2.2	4
117	Standardized Polymer Durometry. Journal of Testing and Evaluation, 2011, 39, 696-705.	0.7	17
118	Sag in thermoforming. Polymer Engineering and Science, 2010, 50, 2060-2068.	3.1	14
119	Invited Article: Local shear stress transduction. Review of Scientific Instruments, 2010, 81, 021301.	1.3	13
120	Assumed periodicity and dynamic shear stress transduction in rheometry. Journal of Rheology, 2010, 54, 835-858.	2.6	6
121	Thermoforming triangular troughs. Polymer Engineering and Science, 2009, 49, 189-199.	3.1	5
122	Network theory for polymer solutions in large amplitude oscillatory shear. Journal of Non-Newtonian Fluid Mechanics, 2008, 148, 24-32.	2.4	40
123	Analysis of the Normal Stress Differences of Viscoelastic Fluids under Large Amplitude Oscillatory Shear Flow. AIP Conference Proceedings, 2008, , .	0.4	3
124	An Ontology for Large Amplitude Oscillatory Shear Flow. AIP Conference Proceedings, 2008, , .	0.4	13
125	Flash. Polymer Engineering and Science, 2006, 46, 241-247.	3.1	7
126	Publish-or-Perish Postscripts. Physics Today, 2005, 58, 12-12.	0.3	0

#	Article	IF	CITATIONS
127	Die lines in plastics extrusion: Film blowing experiments and numerical simulation. Polymer Engineering and Science, 2004, 44, 1811-1827.	3.1	9
128	Power-law numerical solution for post-die extrusion of plastic pipe. Polymer-Plastics Technology and Engineering, 2002, 41, 1-17.	1.9	3
129	Dynamic response of a shear stress transducer in the sliding plate rheometer. Journal of Non-Newtonian Fluid Mechanics, 2002, 102, 71-96.	2.4	8
130	AXIAL FLOW BETWEEN ECCENTRIC CYLINDERS. Polymer-Plastics Technology and Engineering, 2001, 40, 363-384.	1.9	13
131	The Lodge Rubberlike Liquid Behavior for Cheese in Large Amplitude Oscillatory Shear. Applied Rheology, 2001, 11, 312-319.	5.2	9
132	Wire Coating Under Vacuum. Journal of Engineering Materials and Technology, Transactions of the ASME, 2001, 123, 100-105.	1.4	2
133	Sheet coating by drawdown of extruded polymer. Journal of Coatings Technology, 2001, 73, 127-134.	0.7	2
134	Dynamic slip and nonlinear viscoelasticity. Polymer Engineering and Science, 2000, 40, 507-524.	3.1	14
135	Melt tearing and ovality in wire coating. Polymer Engineering and Science, 2000, 40, 1862-1869.	3.1	2
136	Flaring dies to suppress die drool. Polymer Engineering and Science, 2000, 40, 2113-2123.	3.1	18
137	Angular plane curtain coating by drawdown of extruded polymer. Journal of Coatings Technology, 2000, 72, 63-68.	0.7	2
138	POSTDIE EXTRUSION OF PLASTIC PIPE. Polymer-Plastics Technology and Engineering, 2000, 39, 23-46.	1.9	3
139	Die Lines in Plastics Extrusion. Journal of Polymer Engineering, 2000, 20, .	1.4	4
140	Power Law Model for Tube Coating of Wire. Journal of Polymer Engineering, 2000, 20, .	1.4	1
141	Wire Coating by Drawdown of an Extruded Annular Melt. International Polymer Processing, 1999, 14, 152-158.	0.5	5
142	Angular Wire Coating by Drawdown of an Extruded Melt. Polymer-Plastics Technology and Engineering, 1999, 38, 869-881.	1.9	1
143	Viscous dissipation with fluid inertia in oscillatory shear flow. Journal of Non-Newtonian Fluid Mechanics, 1999, 86, 359-374.	2.4	38
144	Dynamic Fracture Toughness of Cellulose-Fiber-Reinforced Polypropylene: Preliminary Investigation of Microstructural Effects. Journal of Elastomers and Plastics, 1999, 31, 367-378.	1.5	18

#	Article	IF	CITATIONS
145	Molecular origins of nonlinear viscoelasticity. Mikrochimica Acta, 1998, 130, 1-28.	5.0	22
146	Fluid inertia in large amplitude oscillatory shear. Rheologica Acta, 1998, 37, 365-373.	2.4	35
147	Nonlinear viscoelasticity of cheese. Biorheology, 1998, 35, 171-191.	0.4	30
148	Sliding plate and sliding cylinder rheometers. , 1998, , 237-259.		10
149	Using large-amplitude oscillatory shear. , 1998, , 327-356.		51
150	Dynamic fracture toughness of polypropylene reinforced with cellulose fiber. Polymer Engineering and Science, 1997, 37, 1012-1018.	3.1	20
151	Review of die lip buildup in plastics extrusion. Polymer Engineering and Science, 1997, 37, 1113-1126.	3.1	50
152	A kinetic network model for nonlinear flow behavior of molten plastics in both shear and extension. Journal of Non-Newtonian Fluid Mechanics, 1997, 70, 103-123.	2.4	38
153	Common line motion II: sliding plate rheometry. Journal of Non-Newtonian Fluid Mechanics, 1997, 71, 215-229.	2.4	17
154	Common line motion III: implications in polymer extrusion. Journal of Non-Newtonian Fluid Mechanics, 1997, 71, 231-243.	2.4	39
155	Can nonlinear deformation amplify subtle differences in linear viscoelasticity?. Journal of Non-Newtonian Fluid Mechanics, 1996, 66, 193-212.	2.4	18
156	The Role of Temperature in the Entanglement Kinetics of a Polymer Melt. Journal of Applied Mechanics, Transactions ASME, 1995, 62, 794-801.	2.2	8
157	Structural network theory for a filled polymer melt in large amplitude oscillatory shear. Polymer Gels and Networks, 1995, 3, 117-133.	0.6	13
158	A constitutive theory for polyolefins in large amplitude oscillatory shear. Polymer Engineering and Science, 1995, 35, 768-777.	3.1	36
159	Measuring the viscoelastic properties of an ethylene4-tetrafluoroethylene copolymer at ultrasonic frequncies. Polymer Engineering and Science, 1995, 35, 1053-1060.	3.1	1
160	Polymer melt anisotropy in biaxial shear. Journal of Rheology, 1995, 39, 267-283.	2.6	6
161	How Affine is the Entanglement Network of Molten Low-Density Polyethylene in Large Amplitude Oscillatory Shear?. Journal of Engineering Materials and Technology, Transactions of the ASME, 1994, 116, 14-18.	1.4	18
162	A rheometer to measure the viscoelastic properties of polymer melts at ultrasonic frequencies. Review of Scientific Instruments, 1994, 65, 2395-2401.	1.3	10

#	Article	IF	CITATIONS
163	Predicting polymer melt behavior near the inception of wall slip in oscillatory shear. Journal of Non-Newtonian Fluid Mechanics, 1994, 53, 99-111.	2.4	8
164	The relation of dynamic elastic moduli, mechanical damping and mass density to the microstructure of some glass-matrix composites. Journal of Materials Science, 1994, 29, 1670-1675.	3.7	9
165	A sliding plate normal thrust rheometer for molten plastics. Polymer Engineering and Science, 1994, 34, 580-584.	3.1	26
166	Relating blow moldability to large amplitude oscillatory shear behavior. Polymer Engineering and Science, 1994, 34, 888-893.	3.1	17
167	The Transition to Quasi-Periodicity for Molten Plastics in Large Amplitude Oscillatory Shear. Journal of Engineering Materials and Technology, Transactions of the ASME, 1994, 116, 446-450.	1.4	13
168	Simplification of network theory for polymer melts in nonlinear oscillatory shear. AICHE Journal, 1993, 39, 846-854.	3.6	23
169	Best fit for differential constitutive model parameters to non-linear oscillation data. Journal of Non-Newtonian Fluid Mechanics, 1993, 47, 267-280.	2.4	25
170	Obtaining Fourier series graphically from large amplitude oscillatory shear loops. Rheologica Acta, 1993, 32, 328-332.	2.4	25
171	Technical Note: Structure dependent moduli in the contravariant derivative of structural network theories for melts. Journal of Rheology, 1993, 37, 127-132.	2.6	5
172	Validity of separable BKZ model for large amplitude oscillatory shear. Journal of Rheology, 1993, 37, 811-826.	2.6	56
173	A single quartz crystal to measure dynamic elastic moduli at several ultrasonic frequencies. Review of Scientific Instruments, 1993, 64, 492-494.	1.3	9
174	A Spectral Element Simulation of Gravitational Flow During Plastic Pipe Extrusion. Journal of Engineering Materials and Technology, Transactions of the ASME, 1993, 115, 433-439.	1.4	10
175	Large-Amplitude Oscillatory Shear. , 1993, , 99-121.		98
176	Sliding Plate and Sliding Cylinder Rheometers. , 1993, , 383-404.		2
177	Real-time Neutron Radiography of Injection Mold Filling. International Polymer Processing, 1993, 8, 360-364.	0.5	Ο
178	Simulation of Slump in Plastic Pipe Extrusion. Journal of Engineering Materials and Technology, Transactions of the ASME, 1992, 114, 81-83.	1.4	11
179	The quasiâ€periodic nature of a polyurethane melt in oscillatory shear. Journal of Rheology, 1992, 36, 1227-1243.	2.6	37
180	Structural network models for molten plastics evaluated in large amplitude oscillatory shear. Journal of Rheology, 1992, 36, 1529-1546.	2.6	36

#	Article	IF	CITATIONS
181	Elimination of Sag in Plastic Pipe Extrusion. International Polymer Processing, 1992, 7, 140-143.	0.5	13
182	Evaluation of an Upper Convected Maxwell Model for Melts in Large Amplitude Oscillatory Shear. , 1992, , 103-105.		9
183	Viscoelastic Properties of Aircraft Tire Materials. Tire Science and Technology, 1990, 18, 262-281.	0.4	2
184	A novel sliding plate rheometer for molten plastics. Polymer Engineering and Science, 1989, 29, 499-504.	3.1	102
185	The use of the Piezoelectric Composite Oscillator Technique for Measuring the Viscoelasticity of Liquid Crystals. Materials Research Society Symposia Proceedings, 1989, 152, 289.	0.1	1