
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4100551/publications.pdf Version: 2024-02-01

Διμέρον Δ. Ερογ

#	Article	IF	CITATIONS
1	Child and caregiver perspectives on access to psychosocial and educational support in pediatric chronic kidney disease: a focus group study. Pediatric Nephrology, 2023, 38, 249-260.	0.9	2
2	Patient and caregiver perspectives on blood pressure in children with chronic kidney disease. Nephrology Dialysis Transplantation, 2022, 37, 1330-1339.	0.4	2
3	Perspectives of Clinicians on Shared Decision Making in Pediatric CKD: A Qualitative Study. American Journal of Kidney Diseases, 2022, 80, 241-250.	2.1	3
4	Impact of training nephrologists from developing nations and strategies for sustaining a training program in its fourth decade. Kidney International, 2021, 99, 1073-1076.	2.6	7
5	Drug-induced tubulointerstitial nephritis: hypersensitivity and necroinflammatory pathways. Pediatric Nephrology, 2020, 35, 547-554.	0.9	17
6	Establishing core outcome domains in pediatric kidney disease: report of the Standardized Outcomes in Nephrology—Children and Adolescents (SONG-KIDS) consensus workshops. Kidney International, 2020, 98, 553-565.	2.6	58
7	Developing Consensus-Based Outcome Domains for Trials in Children and Adolescents With CKD: An International Delphi Survey. American Journal of Kidney Diseases, 2020, 76, 533-545.	2.1	19
8	ldentifying Important Outcomes for Young People With CKD and Their Caregivers: A Nominal Group Technique Study. American Journal of Kidney Diseases, 2019, 74, 82-94.	2.1	42
9	Uromodulin deficiency alters tubular injury and interstitial inflammation but not fibrosis in experimental obstructive nephropathy. Physiological Reports, 2018, 6, e13654.	0.7	17
10	Child and Parental Perspectives on Communication and Decision Making in Pediatric CKD: A Focus Group Study. American Journal of Kidney Diseases, 2018, 72, 547-559.	2.1	46
11	Range and Heterogeneity of Outcomes in Randomized Trials of Pediatric Chronic Kidney Disease. Journal of Pediatrics, 2017, 186, 110-117.e11.	0.9	35
12	Setting New Directions for Research in Childhood Nephrotic Syndrome: Results From a National Workshop. Canadian Journal of Kidney Health and Disease, 2017, 4, 205435811770338.	0.6	6
13	Standardised Outcomes in Nephrology—Children and Adolescents (SONG-Kids): a protocol for establishing a core outcome set for children with chronic kidney disease. Trials, 2016, 17, 401.	0.7	41
14	Interstitial Nephritis in Children. , 2016, , 1013-1036.		4
15	The impact of small kidneys. Pediatric Nephrology, 2015, 30, 1501-1509.	0.9	14
16	Overview of the cellular and molecular basis of kidney fibrosis. Kidney International Supplements, 2014, 4, 2-8.	4.6	193
17	The Canadian Childhood Nephrotic Syndrome (CHILDNEPH) Project: Overview of Design and Methods. Canadian Journal of Kidney Health and Disease, 2014, 1, 17.	0.6	19
18	Cysteamine Modulates Oxidative Stress and Blocks Myofibroblast Activity in CKD. Journal of the American Society of Nephrology: JASN, 2014, 25, 43-54.	3.0	58

#	Article	IF	CITATIONS
19	Acute kidney injury and its association with in-hospital mortality among children with acute infections. Pediatric Nephrology, 2013, 28, 2199-2206.	0.9	39
20	The origin of scar-forming kidney myofibroblasts. Nature Medicine, 2013, 19, 964-966.	15.2	32
21	Mannose Receptor 2 Attenuates Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2012, 23, 236-251.	3.0	62
22	Critical and Honest Conversations. Clinical Journal of the American Society of Nephrology: CJASN, 2012, 7, 1664-1672.	2.2	157
23	Vascular Endothelial Cadherin Modulates Renal Interstitial Fibrosis. Nephron Experimental Nephrology, 2012, 120, e20-e31.	2.4	22
24	Albumin-induced apoptosis of glomerular parietal epithelial cells is modulated by extracellular signal-regulated kinase 1/2. Nephrology Dialysis Transplantation, 2012, 27, 1330-1343.	0.4	32
25	Investigating mechanisms of chronic kidney disease in mouse models. Pediatric Nephrology, 2012, 27, 1233-1247.	0.9	116
26	Scraping fibrosis: UMODulating renal fibrosis. Nature Medicine, 2011, 17, 553-555.	15.2	19
27	Nicotinic acetylcholine receptor $\hat{l}\pm 1$ promotes calpain-1 activation and macrophage inflammation in hypercholesterolemic nephropathy. Laboratory Investigation, 2011, 91, 106-123.	1.7	16
28	The TGF-β Route to Renal Fibrosis Is Not Linear: The miR-21 Viaduct. Journal of the American Society of Nephrology: JASN, 2011, 22, 1573-1575.	3.0	4
29	Vitronectin accumulates in the interstitium but minimally impacts fibrogenesis in experimental chronic kidney disease. American Journal of Physiology - Renal Physiology, 2011, 300, F1244-F1254.	1.3	14
30	Galectin-3 preserves renal tubules and modulates extracellular matrix remodeling in progressive fibrosis. American Journal of Physiology - Renal Physiology, 2011, 300, F245-F253.	1.3	72
31	Phase 1 Trial of Adalimumab in Focal Segmental Clomerulosclerosis (FSGS): II. Report of the FONT (Novel Therapies for Resistant FSGS) Study Group. American Journal of Kidney Diseases, 2010, 55, 50-60.	2.1	73
32	Round 3 at JASN (2001 to 2007): Recollections of the Third Editorial Team. Journal of the American Society of Nephrology: JASN, 2010, 21, 1409-1410.	3.0	2
33	Serine proteases, inhibitors and receptors in renal fibrosis. Thrombosis and Haemostasis, 2009, 101, 656-664.	1.8	70
34	CD36 Regulates Oxidative Stress and Inflammation in Hypercholesterolemic CKD. Journal of the American Society of Nephrology: JASN, 2009, 20, 495-505.	3.0	127
35	Phase I Trial of Rosiglitazone in FSGS. Clinical Journal of the American Society of Nephrology: CJASN, 2009, 4, 39-47.	2.2	34
36	A Novel Signaling Pathway. Journal of Biological Chemistry, 2009, 284, 29050-29064.	1.6	30

#	Article	IF	CITATIONS
37	Pathophysiology of Progressive Renal Disease. , 2009, , 1631-1659.		4
38	Serine proteases, inhibitors and receptors in renal fibrosis. Thrombosis and Haemostasis, 2009, 101, 656-64.	1.8	41
39	Urokinase and its receptors in chronic kidney disease. Frontiers in Bioscience - Landmark, 2008, Volume, 5462.	3.0	34
40	Macrophage diversity in renal injury and repair. Journal of Clinical Investigation, 2008, 118, 3522-3530.	3.9	637
41	Interstitial Nephritis. , 2008, , 527-538.		Ο
42	Atherogenic scavenger receptor modulation in the tubulointerstitium in response to chronic renal injury. American Journal of Physiology - Renal Physiology, 2007, 293, F575-F585.	1.3	70
43	Plasmin(ogen) Promotes Renal Interstitial Fibrosis by Promoting Epithelial-to-Mesenchymal Transition: Role of Plasmin-Activated Signals. Journal of the American Society of Nephrology: JASN, 2007, 18, 846-859.	3.0	97
44	Endogenous urokinase lacks antifibrotic activity during progressive renal injury. American Journal of Physiology - Renal Physiology, 2007, 293, F12-F19.	1.3	40
45	Subepithelial Humps and Microthrombi: Looking for a Mechanism. American Journal of Kidney Diseases, 2006, 47, 365-370.	2.1	1
46	Ramping up endogenous defences against chronic kidney disease. Nephrology Dialysis Transplantation, 2006, 21, 1174-1177.	0.4	9
47	Plasminogen Activator Inhibitor-1 Deficiency Has Renal Benefits but Some Adverse Systemic Consequences in Diabetic Mice. Nephron Experimental Nephrology, 2006, 104, e23-e34.	2.4	31
48	Chronic Kidney Disease Progression. Journal of the American Society of Nephrology: JASN, 2006, 17, 2964-2966.	3.0	171
49	Plasminogen Activator Inhibitor-1 in Chronic Kidney Disease: Evidence and Mechanisms of Action. Journal of the American Society of Nephrology: JASN, 2006, 17, 2999-3012.	3.0	213
50	Multifunctionality of PAI-1 in fibrogenesis: Evidence from obstructive nephropathy in PAI-1–overexpressing mice. Kidney International, 2005, 67, 2221-2238.	2.6	124
51	Can renal fibrosis be reversed?. Pediatric Nephrology, 2005, 20, 1369-1375.	0.9	47
52	Progression in Chronic Kidney Disease. Advances in Chronic Kidney Disease, 2005, 12, 353-365.	0.6	280
53	Exogenous Bone Morphogenetic Protein-7 Fails to Attenuate Renal Fibrosis in Rats with Overload Proteinuria. Nephron Experimental Nephrology, 2004, 97, e123-e135.	2.4	22
54	Mitogenic Signaling of Urokinase Receptor-Deficient Kidney Fibroblasts: Actions of an Alternative Urokinase Receptor and LDL Receptor-Related Protein. Journal of the American Society of Nephrology: JASN, 2004, 15, 2090-2102.	3.0	19

#	Article	IF	CITATIONS
55	Why is proteinuria an ominous biomarker of progressive kidney disease?. Kidney International, 2004, 66, S76-S89.	2.6	138
56	Expression of nephrin in acquired forms of nephrotic syndrome in childhood. Pediatric Nephrology, 2004, 19, 300-305.	0.9	25
57	The NPHP1 Gene Deletion Associated with Juvenile Nephronophthisis Is Present in a Subset of Individuals with Joubert Syndrome. American Journal of Human Genetics, 2004, 75, 82-91.	2.6	228
58	Proteinuria and interstitial injury. Nephrology Dialysis Transplantation, 2004, 19, 277-281.	0.4	134
59	Nephrotic syndrome in childhood. Lancet, The, 2003, 362, 629-639.	6.3	716
60	Urokinase Receptor Modulates Cellular and Angiogenic Responses in Obstructive Nephropathy. Journal of the American Society of Nephrology: JASN, 2003, 14, 1234-1253.	3.0	57
61	Urokinase Receptor Deficiency Accelerates Renal Fibrosis in Obstructive Nephropathy. Journal of the American Society of Nephrology: JASN, 2003, 14, 1254-1271.	3.0	111
62	An Introduction to Frontiers in Nephrology. Journal of the American Society of Nephrology: JASN, 2002, 13, 2185-2185.	3.0	2
63	Plasminogen activator inhibitor-1 and the kidney. American Journal of Physiology - Renal Physiology, 2002, 283, F209-F220.	1.3	166
64	Role of cellular infiltrates in response to proteinuria. American Journal of Kidney Diseases, 2001, 37, S25-S29.	2.1	72
65	Mast cells find their way to the kidney. Kidney International, 2001, 60, 375-377.	2.6	23
66	PAI-1 deficiency attenuates the fibrogenic response to ureteral obstruction. Kidney International, 2001, 60, 587-596.	2.6	246
67	TIMP-1 Deficiency Does Not Attenuate Interstitial Fibrosis in Obstructive Nephropathy. Journal of the American Society of Nephrology: JASN, 2001, 12, 736-748.	3.0	108
68	Interstitial fibrosis in mice with overload proteinuria: Deficiency of TIMP-1 is not protective. Kidney International, 2000, 58, 618-628.	2.6	109
69	Molecular basis of renal fibrosis. Pediatric Nephrology, 2000, 15, 290-301.	0.9	555
70	Renal remodelling in dietary protein modified rat polycystic kidney disease. Pediatric Nephrology, 1999, 13, 567-570.	0.9	12
71	Interstitial fibrosis in hypercholesterolemic rats: Role of oxidation, matrix synthesis, and proteolytic cascades. Kidney International, 1998, 53, 1182-1189.	2.6	59
72	Expression and Function of Monocyte Chemoattractant Protein-1 in Experimental Nephrotic Syndrome. Clinical Immunology and Immunopathology, 1996, 78, 140-151.	2.1	28

ALLISON A EDDY

#	Article	IF	CITATIONS
73	Antiribosomal P antibodies in pediatric patients with systemic lupus erythematosus and psychosis. Arthritis and Rheumatism, 1996, 39, 671-676.	6.7	73
74	Interstitial inflammation and fibrosis in rats with diet-induced hypercholesterolemia. Kidney International, 1996, 50, 1139-1149.	2.6	100
75	Renal expression of genes that promote interstitial inflammation and fibrosis in rats with protein-overload proteinuria. Kidney International, 1995, 47, 1546-1557.	2.6	338
76	Neurologic manifestations of pediatric systemic lupus erythematosus. Pediatric Neurology, 1995, 13, 191-197.	1.0	138
77	Xanthogranulomatous Pyelonephritis in Children. Clinical Pediatrics, 1994, 33, 360-366.	0.4	40
78	The contribution of antibody-mediated cytotoxicity and immune-complex formation to tubulointerstitial disease in passive Heymann nephritis. Clinical Immunology and Immunopathology, 1992, 62, 42-55.	2.1	12
79	Tubulointerstitial nephritis. Pediatric Nephrology, 1992, 6, 572-586.	0.9	37
80	Intrarenal distribution of clusterin following reduction of renal mass. Kidney International, 1992, 41, 938-950.	2.6	36
81	Presence of thyroid abnormalities in children with systemic lupus erythematosus. Journal of Pediatrics, 1991, 119, 277-279.	0.9	38
82	Pulmonary Hemorrhage and Necrotizing Glomerulonephritis Without Glomerular Immune Deposits: Report of Two Cases. American Journal of Kidney Diseases, 1991, 18, 257-263.	2.1	3
83	Tubuloînterstitial Nephritis during the Heterologous Phase of Nephrotoxic Serum Nephritis. Nephron, 1991, 59, 304-313.	0.9	8
84	Localization of clusterin in the epimembranous deposits of passive Heymann nephritis. Kidney International, 1991, 39, 247-252.	2.6	27
85	Pathogenesis of interstitial fibrosis in chronic purine aminonucleoside nephrosis. Kidney International, 1991, 40, 1020-1031.	2.6	132
86	A study by immunofluorescence microscopy of the NC1 domain of collagen type IV in glomerular basement membranes of two patients with hereditary nephritis. Virchows Archiv A, Pathological Anatomy and Histopathology, 1990, 416, 205-212.	1.4	6
87	Intraglomerular leukocyte recruitment during nephrotoxic serum nephritis in rats. Clinical Immunology and Immunopathology, 1990, 57, 441-458.	2.1	11
88	Prolongation of acute renal failure in two patients with hemolytic-uremic syndrome due to excessive plasma infusion therapy. Pediatric Nephrology, 1989, 3, 420-423.	0.9	18
89	Acute tubulointerstitial nephritis associated with aminonucleoside nephrosis. Kidney International, 1988, 33, 14-23.	2.6	111
90	Demonstration by Light Microscopy of Cytomegalovirus on a Renal Biopsy of a Renal Allograft Recipient: Confirmation by Immunohistochemistry and in situ Hybridization. Nephron, 1987, 47, 205-208.	0.9	20

#	Article	IF	CITATIONS
91	Pseudohermaphroditism, glomerulopathy, and Wilms tumor (Drash syndrome): Frequency in end-stage renal failure. Journal of Pediatrics, 1985, 106, 584-587.	0.9	88
92	Decreased plasma fibronectin levels in children with hemolytic-uremic syndrome. American Journal of Medicine, 1985, 78, 549-554.	0.6	11
93	The distribution of the CR3 receptor on human cells and tissue as revealed by a monoclonal antibody. Clinical Immunology and Immunopathology, 1984, 31, 371-389.	2.1	52