
David J Sanderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4100461/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hippocampal synaptic plasticity, spatial memory and anxiety. Nature Reviews Neuroscience, 2014, 15, 181-192.	4.9	533
2	Contribution of Hippocampal and Extra-Hippocampal NR2B-Containing NMDA Receptors to Performance on Spatial Learning Tasks. Neuron, 2008, 60, 846-860.	3.8	213
3	Systemic inflammation induces acute working memory deficits in the primed brain: relevance for delirium. Neurobiology of Aging, 2012, 33, 603-616.e3.	1.5	193
4	NMDA Receptor Subunit NR2A Is Required for Rapidly Acquired Spatial Working Memory But Not Incremental Spatial Reference Memory. Journal of Neuroscience, 2008, 28, 3623-3630.	1.7	171
5	Kinematic features of wheelchair propulsion. Journal of Biomechanics, 1985, 18, 423-429.	0.9	143
6	Dissecting spatial knowledge from spatial choice by hippocampal NMDA receptor deletion. Nature Neuroscience, 2012, 15, 1153-1159.	7.1	135
7	Malaise in the water maze: Untangling the effects of LPS and IL-1Î ² on learning and memory. Brain, Behavior, and Immunity, 2008, 22, 1117-1127.	2.0	131
8	Enhanced long-term and impaired short-term spatial memory in GluA1 AMPA receptor subunit knockout mice: Evidence for a dual-process memory model. Learning and Memory, 2009, 16, 379-386.	0.5	121
9	Chapter 9 The role of the GluR-A (GluR1) AMPA receptor subunit in learning and memory. Progress in Brain Research, 2008, 169, 159-178.	0.9	107
10	Worsening Cognitive Impairment and Neurodegenerative Pathology Progressively Increase Risk for Delirium. American Journal of Geriatric Psychiatry, 2015, 23, 403-415.	0.6	107
11	Age-dependent and -independent behavioral deficits in Tg2576 mice. Behavioural Brain Research, 2008, 189, 126-138.	1.2	99
12	Deletion of glutamate receptor-A (GluR-A) AMPA receptor subunits impairs one-trial spatial memory Behavioral Neuroscience, 2007, 121, 559-569.	0.6	98
13	The influence of cadence and power output on the biomechanics of force application during steadyâ€rate cycling in competitive and recreational cyclists. Journal of Sports Sciences, 1991, 9, 191-203.	1.0	94
14	The role of habituation in hippocampusâ€dependent spatial working memory tasks: Evidence from GluA1 AMPA receptor subunit knockout mice. Hippocampus, 2012, 22, 981-994.	0.9	94
15	What causes aberrant salience in schizophrenia? A role for impaired short-term habituation and the GRIA1 (GluA1) AMPA receptor subunit. Molecular Psychiatry, 2014, 19, 1060-1070.	4.1	78
16	Do GluA1 knockout mice exhibit behavioral abnormalities relevant to the negative or cognitive symptoms of schizophrenia and schizoaffective disorder?. Neuropharmacology, 2012, 62, 1263-1272.	2.0	74
17	The influence of cadence and power output on force application and in-shoe pressure distribution during cycling by competitive and recreational cyclists. Journal of Sports Sciences, 2000, 18, 173-181.	1.0	68
18	Spatial working memory deficits in GluA1 AMPA receptor subunit knockout mice reflect impaired short-term habituation: Evidence for Wagner's dual-process memory model. Neuropsychologia, 2010, 48, 2303-2315.	0.7	63

DAVID J SANDERSON

#	Article	IF	CITATIONS
19	Deletion of the GluA1 AMPA receptor subunit impairs recency-dependent object recognition memory. Learning and Memory, 2011, 18, 181-190.	0.5	44
20	Gastrocnemius and soleus muscle length, velocity, and EMG responses to changes in pedalling cadence. Journal of Electromyography and Kinesiology, 2006, 16, 642-649.	0.7	43
21	Competitive short-term and long-term memory processes in spatial habituation Journal of Experimental Psychology, 2011, 37, 189-199.	1.9	42
22	Kinematics of wheelchair propulsion in adults and children with spinal cord injury. Archives of Physical Medicine and Rehabilitation, 1994, 75, 1327-1334.	0.5	39
23	Deletion of the GluA1 AMPA receptor subunit alters the expression of short-term memory. Learning and Memory, 2011, 18, 128-131.	0.5	36
24	The importance of the rat hippocampus for learning the structure of visual arrays. European Journal of Neuroscience, 2006, 24, 1781-1788.	1.2	34
25	Structural learning and the hippocampus. Hippocampus, 2007, 17, 723-734.	0.9	29
26	Optogenetic induction of the schizophrenia-related endophenotype of ventral hippocampal hyperactivity causes rodent correlates of positive and cognitive symptoms. Scientific Reports, 2018, 8, 12871.	1.6	22
27	Neurotoxic lesions of the rat perirhinal and postrhinal cortices and their impact on biconditional visual discrimination tasks. Behavioural Brain Research, 2007, 176, 274-283.	1.2	21
28	Memory-dependent effects on palatability in mice. Physiology and Behavior, 2016, 167, 92-99.	1.0	19
29	A comparison of directly recorded and derived acceleration data in movement control research. Human Movement Science, 1990, 9, 573-582.	0.6	16
30	A double dissociation between the effects of sub-pyrogenic systemic inflammation and hippocampal lesions on learning. Behavioural Brain Research, 2009, 201, 103-111.	1.2	16
31	The group II metabotropic glutamate receptor agonist LY354740 and the D2 receptor antagonist haloperidol reduce locomotor hyperactivity but fail to rescue spatial working memory in GluA1 knockout mice. European Journal of Neuroscience, 2017, 45, 912-921.	1.2	13
32	Altered balance of excitatory and inhibitory learning in a genetically modified mouse model of glutamatergic dysfunction relevant to schizophrenia. Scientific Reports, 2017, 7, 1765.	1.6	13
33	Suppression to visual, auditory, and gustatory stimuli habituates normally in rats with excitotoxic lesions of the perirhinal cortex Behavioral Neuroscience, 2009, 123, 1238-1250.	0.6	12
34	Hippocampal lesions can enhance discrimination learning despite normal sensitivity to interference from incidental information. Hippocampus, 2012, 22, 1553-1566.	0.9	12
35	GluA1 AMPAR subunit deletion reduces the hedonic response to sucrose but leaves satiety and conditioned responses intact. Scientific Reports, 2017, 7, 7424.	1.6	10
36	Continual Trials Spontaneous Recognition Tasks in Mice: Reducing Animal Numbers and Improving Our Understanding of the Mechanisms Underlying Memory. Frontiers in Behavioral Neuroscience, 2018, 12, 214.	1.0	10

DAVID J SANDERSON

#	Article	IF	CITATIONS
37	Effect of manipulation of plasma lactate on integrated EMG during cycling. Medicine and Science in Sports and Exercise, 1992, 24, 911???916.	0.2	9
38	Dissociations within short-term memory in GluA1 AMPA receptor subunit knockout mice. Behavioural Brain Research, 2011, 224, 8-14.	1.2	9
39	Contexts control negative contrast and restrict the expression of flavor preference conditioning Journal of Experimental Psychology Animal Learning and Cognition, 2016, 42, 95-105.	0.3	7
40	The effect of the amount of blocking cue training on blocking of appetitive conditioning in mice. Behavioural Processes, 2016, 122, 36-42.	0.5	7
41	The NMDA receptor antagonist MK-801 fails to impair long-term recognition memory in mice when the state-dependency of memory is controlled. Neurobiology of Learning and Memory, 2019, 161, 57-62.	1.0	7
42	Spontaneous object-location memory based on environmental geometry is impaired by both hippocampal and dorsolateral striatal lesions. Brain and Neuroscience Advances, 2020, 4, 239821282097259.	1.8	5
43	Use of augmented feedback for the modification of the pedaling mechanics of cyclists. Canadian Journal of Sport Sciences = Journal Canadien Des Sciences Du Sport, 1990, 15, 38-42.	0.2	5
44	Delay of reinforcement versus rate of reinforcement in Pavlovian conditioning Journal of Experimental Psychology Animal Learning and Cognition, 2019, 45, 203-221.	0.3	4
45	Uncertainty and predictiveness modulate attention in human predictive learning Journal of Experimental Psychology: General, 2021, 150, 1177-1202.	1.5	4
46	Supersmart mice: Surprising or surprised? Theoretical comment on Singer, Boison, Möhler, Feldon, and Yee (2007) Behavioral Neuroscience, 2007, 121, 1137-1139.	0.6	3
47	The effect of US signalling and the US–CS interval on backward conditioning in mice. Learning and Motivation, 2014, 48, 22-32.	0.6	3
48	A biphasic reduction in a measure of palatability following sucrose consumption in mice. Physiology and Behavior, 2018, 184, 129-134.	1.0	3
49	Cue duration determines response rate but not rate of acquisition of Pavlovian conditioning in mice. Quarterly Journal of Experimental Psychology, 2020, 73, 2026-2035.	0.6	3
50	The GluA1 AMPAR subunit is necessary for hedonic responding but not hedonic value in female mice. Physiology and Behavior, 2021, 228, 113206.	1.0	3
51	Dissociating Representations of Time and Number in Reinforcement-Rate Learning by Deletion of the GluA1 AMPA Receptor Subunit in Mice. Psychological Science, 2021, 32, 204-217.	1.8	3
52	AN INVESTICATION OF THE EFFECTIVENESS OF FORCE APPLICATION IN CYCLING. Medicine and Science in Sports and Exercise, 1985, 17, 222.	0.2	2