
## Chet T Moritz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4100167/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Multisite Transcutaneous Spinal Stimulation for Walking and Autonomic Recovery in<br>Motor-Incomplete Tetraplegia: A Single-Subject Design. Physical Therapy, 2022, 102, .                                  | 1.1 | 19        |
| 2  | Automated lever task with minimum antigravity movement for rats with cervical spinal cord injury.<br>Journal of Neuroscience Methods, 2022, 366, 109433.                                                    | 1.3 | 2         |
| 3  | Design of intracortical microstimulation patterns to control the location, intensity, and quality of evoked sensations in human and animal models. , 2021, , 479-506.                                       |     | 0         |
| 4  | Brain-Computer-Spinal Interface Restores Upper Limb Function After Spinal Cord Injury. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 1233-1242.                             | 2.7 | 17        |
| 5  | Glassy carbon microelectrode arrays enable voltage-peak separated simultaneous detection of<br>dopamine and serotonin using fast scan cyclic voltammetry. Analyst, The, 2021, 146, 3955-3970.               | 1.7 | 21        |
| 6  | Meeting Proceedings for SCI 2020: Launching a Decade of Disruption in Spinal Cord Injury Research.<br>Journal of Neurotrauma, 2021, 38, 1251-1266.                                                          | 1.7 | 14        |
| 7  | Graphene on glassy carbon microelectrodes demonstrate long-term structural and functional<br>stability in neurophysiological recording and stimulation. Journal of Neural Engineering, 2021, 18,<br>056035. | 1.8 | 4         |
| 8  | Transcutaneous Spinal Cord Stimulation Restores Hand and Arm Function After Spinal Cord Injury.<br>IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 310-319.                   | 2.7 | 97        |
| 9  | Reconfiguring Motor Circuits for a Joint Manual and BCI Task. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 248-257.                                                        | 2.7 | 7         |
| 10 | Respiratory resetting elicited by single pulse spinal stimulation. Respiratory Physiology and Neurobiology, 2020, 274, 103339.                                                                              | 0.7 | 4         |
| 11 | A roadmap for advancing neurostimulation approaches for bladder and bowel function after spinal cord injury. Spinal Cord, 2020, 58, 1227-1232.                                                              | 0.9 | 5         |
| 12 | Neural engineering: the process, applications, and its role in the future of medicine. Journal of Neural Engineering, 2019, 16, 063002.                                                                     | 1.8 | 14        |
| 13 | High Performance Flexible Protocol for Backscattered-Based Neural Implants. , 2019, , .                                                                                                                     |     | 1         |
| 14 | A Robust Encoding Scheme for Delivering Artificial Sensory Information via Direct Brain Stimulation.<br>IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1994-2004.            | 2.7 | 13        |
| 15 | NeuralCLIP: A Modular FPGA-Based Neural Interface for Closed-Loop Operation. , 2019, , .                                                                                                                    |     | 3         |
| 16 | Automated Center-out Rodent Behavioral Trainer (ACRoBaT), an automated device for training rats to perform a modified center out task. Behavioural Brain Research, 2018, 346, 115-121.                      | 1.2 | 6         |
| 17 | Intraspinal microstimulation for respiratory muscle activation. Experimental Neurology, 2018, 302, 93-103.                                                                                                  | 2.0 | 25        |
| 18 | A giant step for spinal cord injury research. Nature Neuroscience, 2018, 21, 1647-1648.                                                                                                                     | 7.1 | 12        |

CHET T MORITZ

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Transcutaneous Electrical Spinal Stimulation Promotes Long-Term Recovery of Upper Extremity<br>Function in Chronic Tetraplegia. IEEE Transactions on Neural Systems and Rehabilitation Engineering,<br>2018, 26, 1272-1278. | 2.7 | 143       |
| 20 | Now is the Critical Time for Engineered Neuroplasticity. Neurotherapeutics, 2018, 15, 628-634.                                                                                                                              | 2.1 | 28        |
| 21 | Ultra-Capacitive Carbon Neural Probe Allows Simultaneous Long-Term Electrical Stimulations and<br>High-Resolution Neurotransmitter Detection. Scientific Reports, 2018, 8, 6958.                                            | 1.6 | 56        |
| 22 | Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits.<br>Science Advances, 2017, 3, e1600955.                                                                                 | 4.7 | 170       |
| 23 | Regenerative Rehabilitation: Combining Stem Cell Therapies and Activity-Dependent Stimulation.<br>Pediatric Physical Therapy, 2017, 29, S10-S15.                                                                            | 0.3 | 10        |
| 24 | Therapeutic Stimulation for Restoration of Function After Spinal Cord Injury. Physiology, 2017, 32, 391-398.                                                                                                                | 1.6 | 42        |
| 25 | New Perspectives on Neuroengineering and Neurotechnologies: NSF-DFG Workshop Report. IEEE<br>Transactions on Biomedical Engineering, 2016, 63, 1354-1367.                                                                   | 2.5 | 23        |
| 26 | A high-voltage compliant neural stimulator with HF wireless power and UHF backscatter communication. , 2016, , .                                                                                                            |     | 3         |
| 27 | A Cervical Hemi-Contusion Spinal Cord Injury Model for the Investigation of Novel Therapeutics<br>Targeting Proximal and Distal Forelimb Functional Recovery. Journal of Neurotrauma, 2015, 32,<br>1994-2007.               | 1.7 | 37        |
| 28 | Understanding upper extremity home programs and the use of gaming technology for persons after stroke. Disability and Health Journal, 2015, 8, 507-513.                                                                     | 1.6 | 38        |
| 29 | Simultaneous and independent control of a brain-computer interface and contralateral limb movement. Brain-Computer Interfaces, 2015, 2, 174-185.                                                                            | 0.9 | 14        |
| 30 | Increased Anatomical Specificity of Neuromodulation via Modulated Focused Ultrasound. PLoS ONE, 2014, 9, e86939.                                                                                                            | 1.1 | 142       |
| 31 | Therapeutic intraspinal stimulation to generate activity and promote long-term recovery. Frontiers in Neuroscience, 2014, 8, 21.                                                                                            | 1.4 | 44        |
| 32 | Affective brain-computer interfaces as enabling technology for responsive psychiatric stimulation.<br>Brain-Computer Interfaces, 2014, 1, 126-136.                                                                          | 0.9 | 42        |
| 33 | Preliminary Investigation of an Electromyography-Controlled Video Game as a Home Program for<br>Persons in the Chronic Phase of Stroke Recovery. Archives of Physical Medicine and Rehabilitation,<br>2014, 95, 1461-1469.  | 0.5 | 39        |
| 34 | An optimal control analysis of motor strategies in a brain-computer interface task. , 2013, , .                                                                                                                             |     | 0         |
| 35 | Cervical intraspinal microstimulation evokes robust forelimb movements before and after injury.<br>Journal of Neural Engineering, 2013, 10, 036001.                                                                         | 1.8 | 78        |
| 36 | Applying best practices from digital control systems to BMI implementation. , 2012, 2012, 1699-702.                                                                                                                         |     | 3         |

CHET T MORITZ

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | 'Neurogame Therapy' for Improvement of Movement Coordination after Brain Injury: Developing a<br>Wireless Biosignal Game Therapy System. , 2011, , .                                   |      | 6         |
| 38 | Volitional control of single cortical neurons in a brain–machine interface. Journal of Neural<br>Engineering, 2011, 8, 025017.                                                         | 1.8  | 62        |
| 39 | A spring in your step: some is good, more is not always better. Journal of Applied Physiology, 2009, 107,<br>643-644.                                                                  | 1.2  | 8         |
| 40 | Robust passive dynamics of the musculoskeletal system compensate for unexpected surface changes during human hopping. Journal of Applied Physiology, 2009, 107, 801-808.               | 1.2  | 56        |
| 41 | Direct control of paralysed muscles by cortical neurons. Nature, 2008, 456, 639-642.                                                                                                   | 13.7 | 545       |
| 42 | Forelimb Movements and Muscle Responses Evoked by Microstimulation of Cervical Spinal Cord in Sedated Monkeys. Journal of Neurophysiology, 2007, 97, 110-120.                          | 0.9  | 96        |
| 43 | Human hoppers compensate for simultaneous changes in surface compression and damping. Journal of<br>Biomechanics, 2006, 39, 1030-1038.                                                 | 0.9  | 26        |
| 44 | Prolonged muscle vibration increases stretch reflex amplitude, motor unit discharge rate, and force fluctuations in a hand muscle. Journal of Applied Physiology, 2005, 99, 1835-1842. | 1.2  | 63        |
| 45 | Discharge Rate Variability Influences the Variation in Force Fluctuations Across the Working Range of a Hand Muscle. Journal of Neurophysiology, 2005, 93, 2449-2459.                  | 0.9  | 360       |
| 46 | Coherence at 16-32 Hz Can Be Caused by Short-Term Synchrony of Motor Units. Journal of Neurophysiology, 2005, 94, 105-118.                                                             | 0.9  | 26        |
| 47 | Human hopping on very soft elastic surfaces: implications for muscle pre-stretch and elastic energy storage in locomotion. Journal of Experimental Biology, 2005, 208, 939-949.        | 0.8  | 73        |
| 48 | Passive dynamics change leg mechanics for an unexpected surface during human hopping. Journal of<br>Applied Physiology, 2004, 97, 1313-1322.                                           | 1.2  | 127       |
| 49 | Neuromuscular changes for hopping on a range of damped surfaces. Journal of Applied Physiology, 2004, 96, 1996-2004.                                                                   | 1.2  | 49        |