List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4099893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electron-Transfer State of 9-Mesityl-10-methylacridinium Ion with a Much Longer Lifetime and Higher Energy Than That of the Natural Photosynthetic Reaction Center. Journal of the American Chemical Society, 2004, 126, 1600-1601.	6.6	565
2	Modulating Charge Separation and Charge Recombination Dynamics in Porphyrinâ^'Fullerene Linked Dyads and Triads:A Marcus-Normal versus Inverted Region. Journal of the American Chemical Society, 2001, 123, 2607-2617.	6.6	537
3	Charge Separation in a Novel Artificial Photosynthetic Reaction Center Lives 380 ms. Journal of the American Chemical Society, 2001, 123, 6617-6628.	6.6	500
4	Tuning Reactivity and Mechanism in Oxidation Reactions by Mononuclear Nonheme Iron(IV)-Oxo Complexes. Accounts of Chemical Research, 2014, 47, 1146-1154.	7.6	434
5	Development of bioinspired artificial photosynthetic systems. Physical Chemistry Chemical Physics, 2008, 10, 2283.	1.3	427
6	Light-Harvesting and Photocurrent Generation by Gold Electrodes Modified with Mixed Self-Assembled Monolayers of Boronâ^'Dipyrrin and Ferroceneâ^'Porphyrinâ^'Fullerene Triad. Journal of the American Chemical Society, 2001, 123, 100-110.	6.6	426
7	Organic synthetic transformations using organic dyes as photoredox catalysts. Organic and Biomolecular Chemistry, 2014, 12, 6059-6071.	1.5	402
8	Energetic comparison between photoinduced electron-transfer reactions from NADH model compounds to organic and inorganic oxidants and hydride-transfer reactions from NADH model compounds to p-benzoquinone derivatives. Journal of the American Chemical Society, 1987, 109, 305-316.	6.6	398
9	Selective photocatalytic reactions with organic photocatalysts. Chemical Science, 2013, 4, 561-574.	3.7	347
10	Long-Lived Charge Separation and Applications in Artificial Photosynthesis. Accounts of Chemical Research, 2014, 47, 1455-1464.	7.6	334
11	Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nature Communications, 2016, 7, 11470.	5.8	310
12	Photofunctional nanomaterials composed of multiporphyrins and carbon-based π-electron acceptors. Journal of Materials Chemistry, 2008, 18, 1427.	6.7	306
13	Blue Copper Model Complexes with Distorted Tetragonal Geometry Acting as Effective Electron-Transfer Mediators in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2005, 127, 9648-9654.	6.6	287
14	Energy and environment policy case for a global project on artificial photosynthesis. Energy and Environmental Science, 2013, 6, 695.	15.6	264
15	Unusually Large Tunneling Effect on Highly Efficient Generation of Hydrogen and Hydrogen Isotopes in pH-Selective Decomposition of Formic Acid Catalyzed by a Heterodinuclear Iridiumâ^'Ruthenium Complex in Water. Journal of the American Chemical Society, 2010, 132, 1496-1497.	6.6	252
16	Hydrogen peroxide as a sustainable energy carrier: Electrocatalytic production of hydrogen peroxide and the fuel cell. Electrochimica Acta, 2012, 82, 493-511.	2.6	245
17	Bioinspired Energy Conversion Systems for Hydrogen Production and Storage. European Journal of Inorganic Chemistry, 2008, 2008, 1351-1362.	1.0	244
18	Catalysis of Nickel Ferrite for Photocatalytic Water Oxidation Using [Ru(bpy) ₃] ²⁺ and S ₂ O ₈ ^{2–} . Journal of the American Chemical Society, 2012, 134, 19572-19575.	6.6	243

#	Article	IF	CITATIONS
19	Photocatalytic Oxygenation of Anthracenes and Olefins with Dioxygen via Selective Radical Coupling Using 9-Mesityl-10-methylacridinium Ion as an Effective Electron-Transfer Photocatalyst. Journal of the American Chemical Society, 2004, 126, 15999-16006.	6.6	238
20	Solar energy conversion: From natural to artificial photosynthesis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 31, 36-83.	5.6	228
21	Crystal structure of a metal ion-bound oxoiron(IV) complex and implications for biological electron transfer. Nature Chemistry, 2010, 2, 756-759.	6.6	227
22	Visible-Light-Induced Oxygenation of Benzene by the Triplet Excited State of 2,3-Dichloro-5,6-dicyano- <i>p</i> -benzoquinone. Journal of the American Chemical Society, 2013, 135, 5368-5371.	6.6	227
23	Photosynthetic Antenna–Reaction Center Mimicry by Using Boron Dipyrromethene Sensitizers. ChemPhysChem, 2014, 15, 30-47.	1.0	222
24	Selective One-Electron and Two-Electron Reduction of C60 with NADH and NAD Dimer Analogues via Photoinduced Electron Transfer. Journal of the American Chemical Society, 1998, 120, 8060-8068.	6.6	221
25	New perspective of electron transfer chemistry. Organic and Biomolecular Chemistry, 2003, 1, 609-620.	1.5	221
26	Simultaneous production of p-tolualdehyde and hydrogen peroxide in photocatalytic oxygenation of p-xylene and reduction of oxygen with 9-mesityl-10-methylacridinium ion derivatives. Chemical Communications, 2010, 46, 601-603.	2.2	216
27	Quantitative Evaluation of Lewis Acidity of Metal Ions Derived from theg Values of ESR Spectra of Superoxide: Metal Ion Complexes in Relation to the Promoting Effects in Electron Transfer Reactions. Chemistry - A European Journal, 2000, 6, 4532-4535.	1.7	214
28	Creation of Superheterojunction Polymers via Direct Polycondensation: Segregated and Bicontinuous Donor–Acceptor π-Columnar Arrays in Covalent Organic Frameworks for Long-Lived Charge Separation. Journal of the American Chemical Society, 2015, 137, 7817-7827.	6.6	213
29	Solvent Dependence of Charge Separation and Charge Recombination Rates in Porphyrinâ^'Fullerene Dyad. Journal of Physical Chemistry A, 2001, 105, 325-332.	1.1	212
30	Synthesis and Characterization of Imidazolate-Bridged Dinuclear Complexes as Active Site Models of Cu,Zn-SOD. Journal of the American Chemical Society, 2000, 122, 5733-5741.	6.6	209
31	Water-soluble mononuclear cobalt complexes with organic ligands acting as precatalysts for efficient photocatalytic water oxidation. Energy and Environmental Science, 2012, 5, 7606.	15.6	208
32	Mechanism of Four-Electron Reduction of Dioxygen to Water by Ferrocene Derivatives in the Presence of Perchloric Acid in Benzonitrile, Catalyzed by Cofacial Dicobalt Porphyrins. Journal of the American Chemical Society, 2004, 126, 10441-10449.	6.6	206
33	Efficient Catalytic Decomposition of Formic Acid for the Selective Generation of H ₂ and H/D Exchange with a Waterâ€Soluble Rhodium Complex in Aqueous Solution. ChemSusChem, 2008, 1, 827-834.	3.6	201
34	Long-Lived Charge-Separated State Generated in a Ferrocene–meso,meso-Linked Porphyrin Trimer–Fullerene Pentad with a High Quantum Yield. Chemistry - A European Journal, 2004, 10, 3184-3196.	1.7	200
35	Catalytic Mechanism of Water Oxidation with Single-Site Ruthenium–Heteropolytungstate Complexes. Journal of the American Chemical Society, 2011, 133, 11605-11613.	6.6	200
36	Production of hydrogen peroxide as a sustainable solar fuel from water and dioxygen. Energy and Environmental Science, 2013, 6, 3756.	15.6	200

#	Article	IF	CITATIONS
37	Bioinspired Electron-Transfer Systems and Applications. Bulletin of the Chemical Society of Japan, 2006, 79, 177-195.	2.0	195
38	Comparison of Reorganization Energies for Intra- and Intermolecular Electron Transfer. Angewandte Chemie - International Edition, 2002, 41, 2344-2347.	7.2	193
39	Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure. Energy and Environmental Science, 2012, 5, 7360.	15.6	192
40	Cu/Co ₃ O ₄ Nanoparticles as Catalysts for Hydrogen Evolution from Ammonia Borane by Hydrolysis. Journal of Physical Chemistry C, 2010, 114, 16456-16462.	1.5	191
41	Flavin analog-metal ion complexes acting as efficient photocatalysts in the oxidation of p-methylbenzyl alcohol by oxygen under irradiation with visible light. Journal of the American Chemical Society, 1985, 107, 3020-3027.	6.6	184
42	A Mononuclear Non-Heme Manganese(IV)–Oxo Complex Binding Redox-Inactive Metal Ions. Journal of the American Chemical Society, 2013, 135, 6388-6391.	6.6	182
43	Oxygenation of Phenols to Catechols by A (μ-î-2:Î-2-Peroxo)dicopper(II) Complex:  Mechanistic Insight into the Phenolase Activity of Tyrosinase. Journal of the American Chemical Society, 2001, 123, 6708-6709.	6.6	180
44	Selective photocatalytic aerobic bromination with hydrogen bromide via an electron-transfer state of 9-mesityl-10-methylacridinium ion. Chemical Science, 2011, 2, 715.	3.7	178
45	Photosynthetic Reaction Center Mimicry: Low Reorganization Energy Driven Charge Stabilization in Self-Assembled Cofacial Zinc Phthalocyanine Dimerâ~Fullerene Conjugate. Journal of the American Chemical Society, 2009, 131, 8787-8797.	6.6	177
46	Photoalkylation of 10-Alkylacridinium Ion via a Charge-Shift Type of Photoinduced Electron Transfer Controlled by Solvent Polarity. Journal of the American Chemical Society, 2001, 123, 8459-8467.	6.6	175
47	Enhancement of Light-Energy Conversion Efficiency by Multi-Porphyrin Arrays of Porphyrinâ^'Peptide Oligomers with Fullerene Clusters. Journal of Physical Chemistry B, 2005, 109, 19-23.	1.2	175
48	Metal Ion-Coupled Electron Transfer of a Nonheme Oxoiron(IV) Complex: Remarkable Enhancement of Electron-Transfer Rates by Sc ³⁺ . Journal of the American Chemical Society, 2011, 133, 403-405.	6.6	172
49	Oxidation Mechanism of Phenols by Dicopperâ^'Dioxygen (Cu2/O2) Complexes. Journal of the American Chemical Society, 2003, 125, 11027-11033.	6.6	171
50	A Molecular Tetrad Allowing Efficient Energy Storage for 1.6 s at 163 K. Journal of Physical Chemistry A, 2004, 108, 541-548.	1.1	169
51	Metal Ion Effect on the Switch of Mechanism from Direct Oxygen Transfer to Metal Ion-Coupled Electron Transfer in the Sulfoxidation of Thioanisoles by a Non-Heme Iron(IV)â^'Oxo Complex. Journal of the American Chemical Society, 2011, 133, 5236-5239.	6.6	169
52	Catalytic mechanisms of hydrogen evolution with homogeneous and heterogeneous catalysts. Energy and Environmental Science, 2011, 4, 2754.	15.6	169
53	Direct Oxygenation of Benzene to Phenol Using Quinolinium Ions as Homogeneous Photocatalysts. Angewandte Chemie - International Edition, 2011, 50, 8652-8655.	7.2	167
54	Mechanisms of Sulfoxidation Catalyzed by High-Valent Intermediates of Heme Enzymes: Electron-Transfer vs Oxygen-Transfer Mechanism. Journal of the American Chemical Society, 1999, 121, 9497-9502.	6.6	166

#	Article	IF	CITATIONS
55	Water Oxidation Catalysis with Nonheme Iron Complexes under Acidic and Basic Conditions: Homogeneous or Heterogeneous?. Inorganic Chemistry, 2013, 52, 9522-9531.	1.9	164
56	Supramolecular electron transfer by anion binding. Chemical Communications, 2012, 48, 9801.	2.2	159
57	Dioxygen Activation by a Non-Heme Iron(II) Complex: Formation of an Iron(IV)â^'Oxo Complex via Câ^'H Activation by a Putative Iron(III)â^'Superoxo Species. Journal of the American Chemical Society, 2010, 132, 10668-10670.	6.6	157
58	Driving Force Dependence of Intermolecular Electron-Transfer Reactions of Fullerenes. Chemistry - A European Journal, 2003, 9, 1585-1593.	1.7	156
59	Charge separation in metallomacrocycle complexes linked with electron acceptors by axial coordination. Dalton Transactions, 2009, , 3880.	1.6	154
60	Ion-Mediated Electron Transfer in a Supramolecular Donor-Acceptor Ensemble. Science, 2010, 329, 1324-1327.	6.0	154
61	Organic solar cells. Supramolecular composites of porphyrins and fullerenes organized by polypeptide structures as light harvesters. Journal of Materials Chemistry, 2007, 17, 4160.	6.7	153
62	Efficient Photoinduced Electron Transfer in a Porphyrin Tripodâ^'Fullerene Supramolecular Complex via Ï€â^'Ï€ Interactions in Nonpolar Media. Journal of the American Chemical Society, 2010, 132, 4477-4489.	6.6	152
63	Production of Liquid Solar Fuels and Their Use in Fuel Cells. Joule, 2017, 1, 689-738.	11.7	149
64	Exciplex Intermediates in Photoinduced Electron Transfer of Porphyrinâ^'Fullerene Dyads. Journal of the American Chemical Society, 2002, 124, 8067-8077.	6.6	148
65	Efficient reduction of dioxygen with ferrocene derivatives, catalyzed by metalloporphyrins in the presence of perchloric acid. Inorganic Chemistry, 1989, 28, 2459-2465.	1.9	147
66	Efficient water oxidation by cerium ammonium nitrate with [Ir ^{III} (Cp*)(4,4′-bishydroxy-2,2′-bipyridine)(H ₂ O)] ²⁺ as a precatalyst. Energy and Environmental Science, 2012, 5, 5708-5716.	15.6	145
67	Catalytic Effects of Dioxygen on Intramolecular Electron Transfer in Radical Ion Pairs of Zinc Porphyrin-Linked Fullerenes. Journal of the American Chemical Society, 2001, 123, 2571-2575.	6.6	144
68	Fundamental Electron-Transfer Properties of Non-heme Oxoiron(IV) Complexes. Journal of the American Chemical Society, 2008, 130, 434-435.	6.6	144
69	Assemblies of artificial photosynthetic reaction centres. Journal of Materials Chemistry, 2012, 22, 4575.	6.7	144
70	Efficient Catalytic Interconversion between NADH and NAD ⁺ Accompanied by Generation and Consumption of Hydrogen with a Water-Soluble Iridium Complex at Ambient Pressure and Temperature. Journal of the American Chemical Society, 2012, 134, 367-374.	6.6	142
71	Cupric Superoxo-Mediated Intermolecular Câ^'H Activation Chemistry. Journal of the American Chemical Society, 2011, 133, 1702-1705.	6.6	141
72	Hydride Transfer from 9-Substituted 10-Methyl-9,10-dihydroacridines to Hydride Acceptors via Charge-Transfer Complexes and Sequential Electronâ^'Protonâ^'Electron Transfer. A Negative Temperature Dependence of the Rates. Journal of the American Chemical Society, 2000, 122, 4286-4294.	6.6	138

#	Article	IF	CITATIONS
73	Electron-transfer oxidation of 9-substituted 10-methyl-9,10-dihydroacridines. Cleavage of the carbon-hydrogen vs. carbon-carbon bond of the radical cations. Journal of the American Chemical Society, 1993, 115, 8960-8968.	6.6	137
74	Hydrogen peroxide as sustainable fuel: electrocatalysts for production with a solar cell and decomposition with a fuel cell. Chemical Communications, 2010, 46, 7334.	2.2	135
75	Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)–peroxo complexes. Nature Chemistry, 2014, 6, 934-940.	6.6	135
76	Ruthenium atalyzed Selective and Efficient Oxygenation of Hydrocarbons with Water as an Oxygen Source. Angewandte Chemie - International Edition, 2008, 47, 5772-5776.	7.2	133
77	Lewis Acid Coupled Electron Transfer of Metal–Oxygen Intermediates. Chemistry - A European Journal, 2015, 21, 17548-17559.	1.7	132
78	Protonated iron–phthalocyanine complex used for cathode material of a hydrogen peroxide fuel cell operated under acidic conditions. Energy and Environmental Science, 2011, 4, 2822.	15.6	131
79	Enhanced Electron-Transfer Reactivity of Nonheme Manganese(IV)–Oxo Complexes by Binding Scandium Ions. Journal of the American Chemical Society, 2013, 135, 9186-9194.	6.6	131
80	Metal ion-coupled and decoupled electron transfer. Coordination Chemistry Reviews, 2010, 254, 372-385.	9.5	127
81	Mononuclear Copper Complex-Catalyzed Four-Electron Reduction of Oxygen. Journal of the American Chemical Society, 2010, 132, 6874-6875.	6.6	127
82	Highly efficient photocatalytic oxygenation reactions using water as an oxygen source. Nature Chemistry, 2011, 3, 38-41.	6.6	126
83	Ion-Controlled On–Off Switch of Electron Transfer from Tetrathiafulvalene Calix[4]pyrroles to Li ⁺ @C ₆₀ . Journal of the American Chemical Society, 2011, 133, 15938-15941.	6.6	125
84	Mechanistic Insights into the Oxidation of Substituted Phenols via Hydrogen Atom Abstraction by a Cupric–Superoxo Complex. Journal of the American Chemical Society, 2014, 136, 9925-9937.	6.6	125
85	Mechanisms and applications of cyclometalated Pt(<scp>ii</scp>) complexes in photoredox catalytic trifluoromethylation. Chemical Science, 2015, 6, 1454-1464.	3.7	123
86	Electron-transfer properties of high-valent metal-oxo complexes. Coordination Chemistry Reviews, 2013, 257, 1564-1575.	9.5	119
87	Homogeneous versus Heterogeneous Catalysts in Water Oxidation. European Journal of Inorganic Chemistry, 2014, 2014, 645-659.	1.0	119
88	Mechanism of hydride transfer from an NADH model compound to p-benzoquinone derivatives. Journal of Organic Chemistry, 1984, 49, 3571-3578.	1.7	118
89	Efficient Two-Electron Reduction of Dioxygen to Hydrogen Peroxide with One-Electron Reductants with a Small Overpotential Catalyzed by a Cobalt Chlorin Complex. Journal of the American Chemical Society, 2013, 135, 2800-2808.	6.6	118
90	A Manganese(V)–Oxo Complex: Synthesis by Dioxygen Activation and Enhancement of Its Oxidizing Power by Binding Scandium Ion. Journal of the American Chemical Society, 2016, 138, 8523-8532.	6.6	118

#	Article	IF	CITATIONS
91	Photocatalytic reduction of phenacyl halides by 9,10-dihydro-10-methylacridine: control between the reductive and oxidative quenching pathways of tris(bipyridine)ruthenium complex utilizing an acid catalysis. The Journal of Physical Chemistry, 1990, 94, 722-726.	2.9	116
92	Enhanced Electronâ€Transfer Properties of Cofacial Porphyrin Dimers through π–π Interactions. Chemistry - A European Journal, 2009, 15, 3110-3122.	1.7	116
93	Thermal and photocatalytic production of hydrogen with earth-abundant metal complexes. Coordination Chemistry Reviews, 2018, 355, 54-73.	9.5	116
94	Fluorescence Maxima of 10-Methylacridoneâ^'Metal Ion Salt Complexes:  A Convenient and Quantitative Measure of Lewis Acidity of Metal Ion Salts. Journal of the American Chemical Society, 2002, 124, 10270-10271.	6.6	115
95	Photocatalytic Production of Hydrogen by Disproportionation of Oneâ€Electronâ€Reduced Rhodium and Iridium–Ruthenium Complexes in Water. Angewandte Chemie - International Edition, 2011, 50, 728-731.	7.2	114
96	Hydrogen Atom Abstraction and Hydride Transfer Reactions by Iron(IV)–Oxo Porphyrins. Angewandte Chemie - International Edition, 2008, 47, 7321-7324.	7.2	113
97	Electron-transfer oxidation of ketene silyl acetals and other organosilanes. Mechanistic insight into Lewis acid mediated electron transfer. Journal of the American Chemical Society, 1992, 114, 10271-10278.	6.6	112
98	High and robust performance of H ₂ O ₂ fuel cells in the presence of scandium ion. Energy and Environmental Science, 2015, 8, 1698-1701.	15.6	112
99	Catalysis on Electron Transfer and the Mechanistic Insight into Redox Reactions. Bulletin of the Chemical Society of Japan, 1997, 70, 1-28.	2.0	111
100	Hydrogen storage and evolution catalysed by metal hydride complexes. Dalton Transactions, 2013, 42, 18-28.	1.6	111
101	Unified View of Oxidative C–H Bond Cleavage and Sulfoxidation by a Nonheme Iron(IV)–Oxo Complex via Lewis Acid-Promoted Electron Transfer. Inorganic Chemistry, 2014, 53, 3618-3628.	1.9	111
102	Persistent Electron-Transfer State of a π-Complex of Acridinium Ion Inserted between Porphyrin Rings of Cofacial Bisporphyrins. Journal of the American Chemical Society, 2006, 128, 14625-14633.	6.6	110
103	LaCoO3 acting as an efficient and robust catalyst for photocatalytic water oxidation with persulfate. Physical Chemistry Chemical Physics, 2012, 14, 5753.	1.3	109
104	Rational Design and Functions of Electron Donor–Acceptor Dyads with Much Longer Charge-Separated Lifetimes than Natural Photosynthetic Reaction Centers. Bulletin of the Chemical Society of Japan, 2009, 82, 303-315.	2.0	108
105	Selective Oxygenation of Ring-Substituted Toluenes with Electron-Donating and -Withdrawing Substituents by Molecular Oxygen via Photoinduced Electron Transfer. Journal of the American Chemical Society, 2003, 125, 12850-12859.	6.6	107
106	Dioxygen Activation by Mononuclear Nonheme Iron(II) Complexes Generates Ironâ^'Oxygen Intermediates in the Presence of an NADH Analogue and Proton. Journal of the American Chemical Society, 2009, 131, 13910-13911.	6.6	107
107	Catalytic Four-Electron Reduction of O ₂ via Rate-Determining Proton-Coupled Electron Transfer to a Dinuclear Cobalt-μ-1,2-peroxo Complex. Journal of the American Chemical Society, 2012, 134, 9906-9909.	6.6	106
108	One-step selective hydroxylation of benzene to phenol with hydrogen peroxide catalysed by copper complexes incorporated into mesoporous silica–alumina. Chemical Science, 2016, 7, 2856-2863.	3.7	106

#	Article	IF	CITATIONS
109	Solarâ€Driven Production of Hydrogen Peroxide from Water and Dioxygen. Chemistry - A European Journal, 2018, 24, 5016-5031.	1.7	106
110	Metal-Centered Photoinduced Electron Transfer Reduction of a Gold(III) Porphyrin Cation Linked with a Zinc Porphyrin to Produce a Long-Lived Charge-Separated State in Nonpolar Solvents. Journal of the American Chemical Society, 2003, 125, 14984-14985.	6.6	105
111	Clarification of the Oxidation State of Cobalt Corroles in Heterogeneous and Homogeneous Catalytic Reduction of Dioxygen. Inorganic Chemistry, 2008, 47, 6726-6737.	1.9	105
112	Mechanisms of catalytic reduction of CO ₂ with heme and nonheme metal complexes. Chemical Science, 2018, 9, 6017-6034.	3.7	105
113	Electron-transfer mechanism in radical-scavenging reactions by a vitamin E model in a protic medium. Organic and Biomolecular Chemistry, 2005, 3, 626.	1.5	104
114	Supramolecular Tetrad of Subphthalocyanine–Triphenylamine–Zinc Porphyrin Coordinated to Fullerene as an "Antennaâ€Reactionâ€Center―Mimic: Formation of a Longâ€Lived Chargeâ€Separated State Nonpolar Solvent. Chemistry - A European Journal, 2010, 16, 6193-6202.	? i n. 7	104
115	A Discrete Supramolecular Conglomerate Composed of Two Saddleâ€Distorted Zinc(II)â€Phthalocyanine Complexes and a Doubly Protonated Porphyrin with Saddle Distortion Undergoing Efficient Photoinduced Electron Transfer. Angewandte Chemie - International Edition, 2008, 47, 6712-6716.	7.2	103
116	Homogeneous catalytic O2 reduction to water by a cytochrome c oxidase model with trapping of intermediates and mechanistic insights. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13990-13994.	3.3	102
117	Hydrogenâ€Atom Abstraction Reactions by Manganese(V)– and Manganese(IV)–Oxo Porphyrin Complexes in Aqueous Solution. Chemistry - A European Journal, 2009, 15, 11482-11489.	1.7	100
118	Water as an Oxygen Source in the Generation of Mononuclear Nonheme Iron(IV) Oxo Complexes. Angewandte Chemie - International Edition, 2009, 48, 1803-1806.	7.2	98
119	Photocatalytic Hydrogen Evolution under Highly Basic Conditions by Using Ru Nanoparticles and 2-Phenyl-4-(1-naphthyl)quinolinium Ion. Journal of the American Chemical Society, 2011, 133, 16136-16145.	6.6	98
120	Enhanced Catalytic Four-Electron Dioxygen (O ₂) and Two-Electron Hydrogen Peroxide (H ₂ O ₂) Reduction with a Copper(II) Complex Possessing a Pendant Ligand Pivalamido Group. Journal of the American Chemical Society, 2013, 135, 6513-6522.	6.6	98
121	Selective electrochemical reduction of CO ₂ to CO with a cobalt chlorin complex adsorbed on multi-walled carbon nanotubes in water. Chemical Communications, 2015, 51, 10226-10228.	2.2	98
122	Efficient Photocatalytic Production of Hydrogen Peroxide from Water and Dioxygen with Bismuth Vanadate and a Cobalt(II) Chlorin Complex. ACS Energy Letters, 2016, 1, 913-919.	8.8	98
123	Formation of a Ruthenium(IV)-Oxo Complex by Electron-Transfer Oxidation of a Coordinatively Saturated Ruthenium(II) Complex and Detection of Oxygen-Rebound Intermediates in C–H Bond Oxygenation. Journal of the American Chemical Society, 2011, 133, 11692-11700.	6.6	97
124	Size―and Shapeâ€Dependent Activity of Metal Nanoparticles as Hydrogenâ€Evolution Catalysts: Mechanistic Insights into Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2011, 17, 2777-2785.	1.7	97
125	Thienyl-substituted methanofullerene derivatives for organic photovoltaic cells. Journal of Materials Chemistry, 2010, 20, 475-482.	6.7	96
126	Intramolecular Electron Transfer within the Substituted Tetrathiafulvaleneâ^'Quinone Dyads:Â Facilitated by Metal Ion and Photomodulation in the Presence of Spiropyran. Journal of the American Chemical Society, 2007, 129, 6839-6846.	6.6	95

8

#	Article	IF	CITATIONS
127	BrÃ,nsted Acid-Promoted C–H Bond Cleavage via Electron Transfer from Toluene Derivatives to a Protonated Nonheme Iron(IV)-Oxo Complex with No Kinetic Isotope Effect. Journal of the American Chemical Society, 2013, 135, 5052-5061.	6.6	94
128	Hydrogen Atom Transfer Reactions of Mononuclear Nonheme Metal–Oxygen Intermediates. Accounts of Chemical Research, 2018, 51, 2014-2022.	7.6	94
129	Mechanisms of Hydrogen-, Oxygen-, and Electron-Transfer Reactions of Cumylperoxyl Radical. Journal of the American Chemical Society, 2003, 125, 9074-9082.	6.6	93
130	Electron-Transfer Oxidation Properties of DNA Bases and DNA Oligomers. Journal of Physical Chemistry A, 2005, 109, 3285-3294.	1.1	93
131	Anion-Complexation-Induced Stabilization of Charge Separation. Journal of the American Chemical Society, 2009, 131, 16138-16146.	6.6	93
132	Metal-free oxygenation of cyclohexane with oxygen catalyzed by 9-mesityl-10-methylacridinium and hydrogen chloride under visible light irradiation. Chemical Communications, 2011, 47, 8515.	2.2	93
133	Fuel Production from Seawater and Fuel Cells Using Seawater. ChemSusChem, 2017, 10, 4264-4276.	3.6	93
134	Resonance Raman Spectroscopy as a Probe of the Bis(μ-oxo)dicopper Core. Journal of the American Chemical Society, 2000, 122, 792-802.	6.6	91
135	Structures and photoinduced electron transfer of protonated complexes of porphyrins and metallophthalocyanines. Coordination Chemistry Reviews, 2012, 256, 2488-2502.	9.5	91
136	Quantitative Evaluation of Lewis Acidity of Metal lons with Different Ligands and Counterions in Relation to the Promoting Effects of Lewis Acids on Electron Transfer Reduction of Oxygen. Journal of Organic Chemistry, 2003, 68, 4720-4726.	1.7	90
137	Mimicking Photosynthetic Antennaâ€Reaction enter Complexes with a (Boron) Tj ETQq1 1 0.784314 rgBT 2011, 17, 1605-1613.	Overlock 10 1.7	Tf 50 347 To 90
138	Photocatalytic CO ₂ Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid. Journal of the American Chemical Society, 2020, 142, 10261-10266.	6.6	90
139	Photocatalytic hydrogen evolution with Ni nanoparticles by using 2-phenyl-4-(1-naphthyl)quinolinium ion as a photocatalyst. Energy and Environmental Science, 2012, 5, 6111.	15.6	89
140	Metal Ion-Catalyzed Dielsâ^'Alder and Hydride Transfer Reactions. Catalysis of Metal Ions in the Electron-Transfer Step. Journal of the American Chemical Society, 2002, 124, 14147-14155.	6.6	88
141	Long-lived long-distance photochemically induced spin-polarized charge separation in β,β′-pyrrolic fused ferrocene-porphyrin-fullerene systems. Chemical Science, 2012, 3, 257-269.	3.7	88
142	Catalytic application of shape-controlled Cu ₂ O particles protected by Co ₃ O ₄ nanoparticles for hydrogen evolution from ammonia borane. Energy and Environmental Science, 2012, 5, 5356-5363.	15.6	88
143	Mechanisms of N-Demethylations Catalyzed by High-Valent Species of Heme Enzymes:  Novel Use of Isotope Effects and Direct Observation of Intermediates. Journal of the American Chemical Society, 1998, 120, 10762-10763.	6.6	87
144	Small Reorganization Energy of Intramolecular Electron Transfer in Fullerene-Based Dyads with Short Linkage. Journal of Physical Chemistry A, 2002, 106, 10991-10998.	1.1	87

#	Article	IF	CITATIONS
145	Effects of Hydrogen Bonding on Metal Ion-Promoted Intramolecular Electron Transfer and Photoinduced Electron Transfer in a Ferrocene-Quinone Dyad with a Rigid Amide Spacer. Journal of the American Chemical Society, 2003, 125, 1007-1013.	6.6	87
146	Tuning the reactivity of mononuclear nonheme manganese(<scp>iv</scp>)-oxo complexes by triflic acid. Chemical Science, 2015, 6, 3624-3632.	3.7	87
147	Oxidation of Benzyl Alcohol with Cull and ZnII Complexes of the Phenoxyl Radical as a Model of the Reaction of Galactose Oxidase. Angewandte Chemie - International Edition, 1999, 38, 2774-2776.	7.2	86
148	Control of Photoinduced Electron Transfer in Zinc Phthalocyanineâ^'Perylenediimide Dyad and Triad by the Magnesium Ion. Journal of Physical Chemistry A, 2008, 112, 10744-10752.	1.1	86
149	Proton-Promoted Oxygen Atom Transfer vs Proton-Coupled Electron Transfer of a Non-Heme Iron(IV)-Oxo Complex. Journal of the American Chemical Society, 2012, 134, 3903-3911.	6.6	86
150	Amphoteric reactivity of metal–oxygen complexes in oxidation reactions. Coordination Chemistry Reviews, 2018, 365, 41-59.	9.5	85
151	Sequential Electron-Transfer and Proton-Transfer Pathways in Hydride-Transfer Reactions from Dihydronicotinamide Adenine Dinucleotide Analogues to Non-heme Oxoiron(IV) Complexes and <i>p</i> -Chloranil. Detection of Radical Cations of NADH Analogues in Acid-Promoted Hydride-Transfer Reactions, Journal of the American Chemical Society, 2008, 130, 15134-15142.	6.6	84
152	Factors That Control Catalytic Two- versus Four-Electron Reduction of Dioxygen by Copper Complexes. Journal of the American Chemical Society, 2012, 134, 7025-7035.	6.6	84
153	Hydrogen Peroxide used as a Solar Fuel in Oneâ€Compartment Fuel Cells. ChemElectroChem, 2016, 3, 1978-1989.	1.7	84
154	Magnesium perchlorate-catalyzed Diels-Alder reactions of anthracenes with p-benzoquinone derivatives: catalysis on the electron transfer step. Journal of the American Chemical Society, 1993, 115, 11600-11601.	6.6	83
155	Dehydrogenation versus Oxygenation in Two-Electron and Four-Electron Reduction of Dioxygen by 9-Alkyl-10-methyl-9,10-dihydroacridines Catalyzed by Monomeric Cobalt Porphyrins and Cofacial Dicobalt Porphyrins in the Presence of Perchloric Acid. Journal of the American Chemical Society, 2004, 126, 17059-17066.	6.6	83
156	New development of photoinduced electron-transfer catalytic systems. Pure and Applied Chemistry, 2007, 79, 981-991.	0.9	83
157	Kinetics and thermodynamics of formation and electron-transfer reactions of Cu–O2 and Cu2–O2 complexes. Coordination Chemistry Reviews, 2013, 257, 187-195.	9.5	82
158	Mechanisms of Twoâ€Electron versus Fourâ€Electron Reduction of Dioxygen Catalyzed by Earthâ€Abundant Metal Complexes. ChemCatChem, 2018, 10, 9-28.	1.8	82
159	Artificial nonheme iron and manganese oxygenases for enantioselective olefin epoxidation and alkane hydroxylation reactions. Coordination Chemistry Reviews, 2020, 421, 213443.	9.5	82
160	Efficient Catalysis of Rare-Earth Metal Ions in Photoinduced Electron-Transfer Oxidation of Benzyl Alcohols by a Flavin Analogue. Journal of Physical Chemistry A, 2001, 105, 10501-10510.	1.1	81
161	Photocatalytic Electron-Transfer Oxidation of Triphenylphosphine and Benzylamine with Molecular Oxygen via Formation of Radical Cations and Superoxide Ion. Bulletin of the Chemical Society of Japan, 2006, 79, 1489-1500.	2.0	81
162	Proton-Coupled Electron-Transfer Reduction of Dioxygen Catalyzed by a Saddle-Distorted Cobalt Phthalocyanine. Journal of the American Chemical Society, 2012, 134, 4196-4206.	6.6	81

#	Article	IF	CITATIONS
163	Photoreduction of alkyl halides by an NADH model compound. An electron-transfer chain mechanism. Journal of the American Chemical Society, 1983, 105, 4722-4727.	6.6	80
164	A Robust One ompartment Fuel Cell with a Polynuclear Cyanide Complex as a Cathode for Utilizing H ₂ O ₂ as a Sustainable Fuel at Ambient Conditions. Chemistry - A European Journal, 2013, 19, 11733-11741.	1.7	80
165	Mechanistic insight into catalytic oxidations of organic compounds by ruthenium(iv)-oxo complexes with pyridylamine ligands. Chemical Science, 2012, 3, 3421.	3.7	79
166	A mononuclear nonheme iron(iii)–peroxo complex binding redox-inactive metal ions. Chemical Science, 2013, 4, 3917.	3.7	79
167	Electron-Transfer Properties of C60 and tert-Butyl-C60 Radical. Journal of the American Chemical Society, 1999, 121, 3468-3474.	6.6	78
168	Photoinduced electron transfer in a β,β′-pyrrolic fused ferrocene–(zinc porphyrin)–fullerene. Physical Chemistry Chemical Physics, 2007, 9, 5260.	1.3	78
169	Electronâ€Transfer Reduction of Dinuclear Copper Peroxo and Bisâ€Î¼â€oxo Complexes Leading to the Catalytic Fourâ€Electron Reduction of Dioxygen to Water. Chemistry - A European Journal, 2012, 18, 1084-1093.	1.7	78
170	Addition of Organosilanes with Aromatic Carbonyl Compounds via Photoinduced Electron Transfer in the Presence of Magnesium Perchlorate. Journal of the American Chemical Society, 1994, 116, 5503-5504.	6.6	77
171	Efficient photocatalytic hydrogen evolution without an electron mediator using a simple electron donor–acceptor dyad. Physical Chemistry Chemical Physics, 2007, 9, 1487-1492.	1.3	77
172	Bioinspired Photocatalytic Water Reduction and Oxidation with Earth-Abundant Metal Catalysts. Journal of Physical Chemistry Letters, 2013, 4, 3458-3467.	2.1	77
173	Identifying Intermediates in Electrocatalytic Water Oxidation with a Manganese Corrole Complex. Journal of the American Chemical Society, 2021, 143, 14613-14621.	6.6	77
174	A Lowâ€Spin Ruthenium(IV)–Oxo Complex: Does the Spin State Have an Impact on the Reactivity?. Angewandte Chemie - International Edition, 2010, 49, 8449-8453.	7.2	76
175	Scandium Ion-Enhanced Oxidative Dimerization and <i>N</i> -Demethylation of <i>N</i> , <i>N</i> -Dimethylanilines by a Non-Heme Iron(IV)-Oxo Complex. Inorganic Chemistry, 2011, 50, 11612-11622.	1.9	76
176	Mechanistic Borderline of One-Step Hydrogen Atom Transfer versus Stepwise Sc ³⁺ -Coupled Electron Transfer from Benzyl Alcohol Derivatives to a Non-Heme Iron(IV)-Oxo Complex. Inorganic Chemistry, 2012, 51, 10025-10036.	1.9	76
177	Modeling of the Chemistry of Quinoprotein Methanol Dehydrogenase. Oxidation of Methanol by Calcium Complex of Coenzyme PQQ via Additionâ^'Elimination Mechanism. Journal of the American Chemical Society, 1997, 119, 439-440.	6.6	75
178	Nondestructive Formation of Supramolecular Nanohybrids of Single-Walled Carbon Nanotubes with Flexible Porphyrinic Polypeptides. Journal of Physical Chemistry C, 2007, 111, 1194-1199.	1.5	75
179	Electronâ€Transfer Properties of an Efficient Nonheme Iron Oxidation Catalyst with a Tetradentate Bispidine Ligand. Angewandte Chemie - International Edition, 2010, 49, 2622-2625.	7.2	75
180	Active Site Models for the Cu _A Site of Peptidylglycine α-Hydroxylating Monooxygenase and Dopamine β-Monooxygenase. Inorganic Chemistry, 2012, 51, 9465-9480.	1.9	75

#	Article	IF	CITATIONS
181	Mesoporous Nickel Ferrites with Spinel Structure Prepared by an Aerosol Spray Pyrolysis Method for Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2014, 2, 2588-2594.	3.2	75
182	Photocatalytic Generation of a Non-Heme Oxoiron(IV) Complex with Water as an Oxygen Source. Journal of the American Chemical Society, 2011, 133, 3249-3251.	6.6	74
183	Stepwise Protonation and Electron-Transfer Reduction of a Primary Copper–Dioxygen Adduct. Journal of the American Chemical Society, 2013, 135, 16454-16467.	6.6	74
184	Metal Ion-Catalyzed Cycloaddition vs Hydride Transfer Reactions of NADH Analogues withp-Benzoquinones. Journal of the American Chemical Society, 2001, 123, 10191-10199.	6.6	73
185	Efficient Photocatalytic Oxygenation of Aromatic Alkene to 1,2-Dioxetane with Oxygen via Electron Transfer. Organic Letters, 2005, 7, 4265-4268.	2.4	73
186	Multiple photosynthetic reaction centres composed of supramolecular assemblies of zinc porphyrin dendrimers with a fullerene acceptor. Chemical Communications, 2011, 47, 7980.	2.2	73
187	Homogeneous Photocatalytic Water Oxidation with a Dinuclear Co ^{III} –Pyridylmethylamine Complex. Inorganic Chemistry, 2016, 55, 1154-1164.	1.9	73
188	A Negative Temperature Dependence of the Electron Self-Exchange Rates of Zinc Porphyrin π Radical Cations. Journal of the American Chemical Society, 2002, 124, 10974-10975.	6.6	72
189	Viologen-Modified Platinum Clusters Acting as an Efficient Catalyst in Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry B, 2006, 110, 24047-24053.	1.2	72
190	Electrosynthesis and Structural Characterization of Two (C6H5CH2)4C60Isomers. Journal of the American Chemical Society, 2000, 122, 563-570.	6.6	71
191	Determination of the Structural Features of a Long-Lived Electron-Transfer State of 9-Mesityl-10-methylacridinium Ion. Journal of the American Chemical Society, 2012, 134, 4569-4572.	6.6	71
192	Bicyclic Baird-type aromaticity. Nature Chemistry, 2017, 9, 1243-1248.	6.6	71
193	Mechanisms of Electron-Transfer Oxidation of NADH Analogues and Chemiluminescence. Detection of the Keto and Enol Radical Cations. Journal of the American Chemical Society, 2003, 125, 4808-4816.	6.6	70
194	Structure and Photoinduced Electron Transfer Dynamics of a Series of Hydrogen-Bonded Supramolecular Complexes Composed of Electron Donors and a Saddle-Distorted Diprotonated Porphyrin. Journal of the American Chemical Society, 2010, 132, 10155-10163.	6.6	70
195	Redox Reactivity of a Mononuclear Manganese-Oxo Complex Binding Calcium Ion and Other Redox-Inactive Metal Ions. Journal of the American Chemical Society, 2019, 141, 1324-1336.	6.6	70
196	Acid-catalyzed electron-transfer processes in reduction of .alphahaloketones by an NADH model compound and ferrocene derivatives. Journal of the American Chemical Society, 1989, 111, 1497-1499.	6.6	69
197	"Umpolung―Photoinduced Charge Separation in an Anion-bound Supramolecular Complex. Journal of the American Chemical Society, 2008, 130, 15256-15257	6.6	69
198	Formation of a long-lived electron-transfer state in mesoporous silica-alumina composites enhances photocatalytic oxygenation reactivity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15572-15577.	3.3	69

#	Article	IF	CITATIONS
199	Catalytic activity of metal-based nanoparticles for photocatalytic water oxidation and reduction. Journal of Materials Chemistry, 2012, 22, 24284.	6.7	69
200	Misleading effects of impurities derived from the extremely long-lived electron-transfer state of 9-mesityl-10-methylacridinium ion. Chemical Communications, 2005, , 4520.	2.2	68
201	Inter―and Intramolecular Photoinduced Electron Transfer of Flavin Derivatives with Extremely Small Reorganization Energies. Chemistry - A European Journal, 2010, 16, 7820-7832.	1.7	68
202	Temperature-Independent Catalytic Two-Electron Reduction of Dioxygen by Ferrocenes with a Copper(II) Tris[2-(2-pyridyl)ethyl]amine Catalyst in the Presence of Perchloric Acid. Journal of the American Chemical Society, 2013, 135, 2825-2834.	6.6	68
203	Fine Tuning of the Interaction between the Copper(I) and Disulfide Bond. Formation of a Bis(μ-thiolato)dicopper(II) Complex by Reductive Cleavage of the Disulfide Bond with Copper(I). Journal of the American Chemical Society, 2001, 123, 4087-4088.	6.6	67
204	Effects of Metal Ions Distinguishing between One-Step Hydrogen- and Electron-Transfer Mechanisms for the Radical-Scavenging Reaction of (+)-Catechin. Journal of Physical Chemistry A, 2002, 106, 11123-11126.	1.1	67
205	Nanostructured assembly of porphyrin clusters for light energy conversion. Journal of Materials Chemistry, 2003, 13, 2515.	6.7	67
206	Mechanistic Insights into Hydride-Transfer and Electron-Transfer Reactions by a Manganese(IV)â^'Oxo Porphyrin Complex. Journal of the American Chemical Society, 2009, 131, 17127-17134.	6.6	67
207	Bottom-up and top-down methods to improve catalytic reactivity for photocatalytic production of hydrogen peroxide using a Ru-complex and water oxidation catalysts. Journal of Materials Chemistry A, 2015, 3, 12404-12412.	5.2	67
208	Homogeneous and Heterogeneous Photocatalytic Water Oxidation by Persulfate. Chemistry - an Asian Journal, 2016, 11, 1138-1150.	1.7	67
209	Aliphatic Hydroxylation by a Bis(μ-oxo)dinickel(III) Complex. Journal of the American Chemical Society, 1999, 121, 8945-8946.	6.6	66
210	ESR Spectra of Superoxide Anionâ^'Scandium Complexes Detectable in Fluid Solution. Journal of the American Chemical Society, 1999, 121, 1605-1606.	6.6	66
211	Electron- and Hydride-Transfer Reactivity of an Isolable Manganese(V)â^'Oxo Complex. Journal of the American Chemical Society, 2011, 133, 1859-1869.	6.6	66
212	Photocatalytic production of hydrogen peroxide from water and dioxygen using cyano-bridged polynuclear transition metal complexes as water oxidation catalysts. Catalysis Science and Technology, 2016, 6, 681-684.	2.1	66
213	Metal Bacteriochlorins Which Act as Dual Singlet Oxygen and Superoxide Generators. Journal of Physical Chemistry B, 2008, 112, 2738-2746.	1.2	65
214	Reorganization Energies of Diprotonated and Saddle-Distorted Porphyrins in Photoinduced Electron-Transfer Reduction Controlled by Conformational Distortion. Journal of the American Chemical Society, 2009, 131, 577-584.	6.6	65
215	Long-lived photoinduced charge separation for solar cell applications in supramolecular complexes of multi-metalloporphyrins and fullerenes. Dalton Transactions, 2013, 42, 15846.	1.6	65
216	Photocatalytic oxidation of benzene to phenol using dioxygen as an oxygen source and water as an electron source in the presence of a cobalt catalyst. Chemical Science, 2017, 8, 7119-7125.	3.7	65

#	Article	IF	CITATIONS
217	Oneâ€Step Selective Hydroxylation of Benzene to Phenol. Asian Journal of Organic Chemistry, 2015, 4, 836-845.	1.3	64
218	Electron-Transfer Kinetics for Generation of Organoiron(IV) Porphyrins and the Iron(IV) Porphyrin π Radical Cations. Journal of the American Chemical Society, 1999, 121, 785-790.	6.6	63
219	Metal Ion-Promoted Intramolecular Electron Transfer in a Ferrocene-Naphthoquinone Linked Dyad. Continuous Change in Driving Force and Reorganization Energy with Metal Ion Concentration. Journal of the American Chemical Society, 2003, 125, 7014-7021.	6.6	63
220	Selective Inclusion of Electronâ€Donating Molecules into Porphyrin Nanochannels Derived from the Selfâ€Assembly of Saddleâ€Distorted, Protonated Porphyrins and Photoinduced Electron Transfer from Guest Molecules to Porphyrin Dications. Chemistry - A European Journal, 2007, 13, 8714-8725.	1.7	63
221	High Catalytic Activity of Heteropolynuclear Cyanide Complexes Containing Cobalt and Platinum Ions: Visibleâ€Light Driven Water Oxidation. Angewandte Chemie - International Edition, 2015, 54, 5613-5617.	7.2	63
222	Mechanisms of metal ion-coupled electron transfer. Physical Chemistry Chemical Physics, 2012, 14, 8472.	1.3	62
223	High-valent metal-oxo complexes generated in catalytic oxidation reactions using water as an oxygen source. Coordination Chemistry Reviews, 2017, 333, 44-56.	9.5	62
224	Reactivity comparison of high-valent iron(iv)-oxo complexes bearing N-tetramethylated cyclam ligands with different ring size. Dalton Transactions, 2013, 42, 7842.	1.6	61
225	Solventâ€Free Oneâ€Step Photochemical Hydroxylation of Benzene Derivatives by the Singlet Excited State of 2,3â€Dichloroâ€5,6â€dicyanoâ€ <i>p</i> â€benzoquinone Acting as a Super Oxidant. Chemistry - A European Journal, 2015, 21, 2855-2861.	1.7	61
226	Photocatalytic Asymmetric Epoxidation of Terminal Olefins Using Water as an Oxygen Source in the Presence of a Mononuclear Non-Heme Chiral Manganese Complex. Journal of the American Chemical Society, 2016, 138, 15857-15860.	6.6	61
227	Mechanistic dichotomies in redox reactions of mononuclear metal–oxygen intermediates. Chemical Society Reviews, 2020, 49, 8988-9027.	18.7	61
228	Response: Why had long-lived electron-transfer states of donor-substituted 10-methylacridinium ions been overlooked? Formation of the dimer radical cations detected in the near-IR region. Physical Chemistry Chemical Physics, 2008, 10, 5159.	1.3	60
229	Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles. Journal of the American Chemical Society, 2017, 139, 15858-15867.	6.6	60
230	Electron-Transfer Properties of Active Aldehydes of Thiamin Coenzyme Models, and Mechanism of Formation of the Reactive Intermediates. Chemistry - A European Journal, 1999, 5, 2810-2818.	1.7	59
231	One-Step versus Stepwise Mechanism in Protonated Amino Acid-Promoted Electron-Transfer Reduction of a Quinone by Electron Donors and Two-Electron Reduction by a Dihydronicotinamide Adenine Dinucleotide Analogue. Interplay between Electron Transfer and Hydrogen Bonding. Journal of the American Chemical Society. 2008. 130. 5808-5820.	6.6	58
232	Formation of a long-lived electron-transfer state of a naphthalene–quinolinium ion dyad and the Ï€-dimer radical cation. Faraday Discussions, 2012, 155, 89-102.	1.6	58
233	Mechanisms of photo-oxidation of NADH model compounds by oxygen. Journal of the Chemical Society Perkin Transactions II, 1989, , 1037.	0.9	57
234	Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen by Using a Water oluble Iridium Complex and Flavin Mononucleotide. Angewandte Chemie - International Edition, 2013, 52, 12327-12331.	7.2	57

#	Article	IF	CITATIONS
235	Light-Driven, Proton-Controlled, Catalytic Aerobic C–H Oxidation Mediated by a Mn(III) Porphyrinoid Complex. Journal of the American Chemical Society, 2015, 137, 4614-4617.	6.6	57
236	Dielsâ	1.1	56
237	Scandium Ion-Promoted Photoinduced Electron Transfer from Electron Donors to Acridine and Pyrene. Essential Role of Scandium Ion in Photocatalytic Oxygenation of Hexamethylbenzene. Journal of the American Chemical Society, 2004, 126, 7585-7594.	6.6	56
238	Acid-Induced Mechanism Change and Overpotential Decrease in Dioxygen Reduction Catalysis with a Dinuclear Copper Complex. Journal of the American Chemical Society, 2013, 135, 4018-4026.	6.6	56
239	High Power Density of One-Compartment H ₂ O ₂ Fuel Cells Using Pyrazine-Bridged Fe[M ^C (CN) ₄] (M ^C = Pt ²⁺ and) Tj ETQq1 1	0 .7.9 4314	r gB T /Overlo
240	Effects of magnesium(II) ion on hydride-transfer reactions from an NADH model compound to p-benzoquinone derivatives. The quantitative evaluation based on the reaction mechanism. Journal of the Chemical Society Perkin Transactions II, 1985, , 371.	0.9	55
241	Aliphatic Câ^'H Bond Activation Initiated by a (μ-η ² :η ² -Peroxo)dicopper(II) Complex in Comparison with Cumylperoxyl Radical. Journal of the American Chemical Society, 2009, 131, 9258-9267.	6.6	55
242	Efficient catalytic systems for electron transfer from an NADH model compound to dioxygen. Inorganic Chemistry, 1990, 29, 653-659.	1.9	54
243	Binding Modes in Metal Ion Complexes of Quinones and Semiquinone Radical Anions: Electron-Transfer Reactivity. ChemPhysChem, 2006, 7, 942-954.	1.0	54
244	Submillisecond-lived photoinduced charge separation in a fully conjugated phthalocyanine–perylenebenzimidazole dyad. Chemical Science, 2014, 5, 4785-4793.	3.7	54
245	Artificial photosynthesis for production of hydrogen peroxide and its fuel cells. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 604-611.	0.5	54
246	Tetraphenylethene-Based Star Shaped Porphyrins: Synthesis, Self-assembly, and Optical and Photophysical Study. Journal of Organic Chemistry, 2015, 80, 3832-3840.	1.7	53
247	Highly Reactive Manganese(IV)-Oxo Porphyrins Showing Temperature-Dependent Reversed Electronic Effect in C–H Bond Activation Reactions. Journal of the American Chemical Society, 2019, 141, 12187-12191.	6.6	53
248	Electron Transfer Mechanism of Organocobalt Porphyrins. Site of Electron Transfer, Migration of Organic Groups, and Cobaltâ^'Carbon Bond Energies in Different Oxidation States. Journal of the American Chemical Society, 1998, 120, 2880-2889.	6.6	52
249	Characterization of Imidazolate-Bridged Dinuclear and Mononuclear Hydroperoxo Complexes. Inorganic Chemistry, 2001, 40, 3200-3207.	1.9	52
250	Hydrogen-Bonding Dynamics in Photoinduced Electron Transfer in a Ferroceneâ^'Quinone Linked Dyad with a Rigid Amide Spacer. Journal of the American Chemical Society, 2002, 124, 6794-6795.	6.6	52
251	Photocurrent generation using gold electrodes modified with self-assembled monolayers of a fullerene–porphyrin dyad. Journal of Materials Chemistry, 2002, 12, 2034-2040.	6.7	52
252	Excited-State Deprotonation and H/D Exchange of an Iridium Hydride Complex. Angewandte Chemie - International Edition, 2003, 42, 5492-5495.	7.2	52

#	Article	IF	CITATIONS
253	Long-Lived Charge Separation in a Dyad of Closely-Linked Subphthalocyanine-Zinc Porphyrin Bearing Multiple Triphenylamines. Journal of Physical Chemistry C, 2009, 113, 15444-15453.	1.5	52
254	Crystal structures and properties of a monoprotonated porphyrin. Chemical Communications, 2009, , 4994.	2.2	52
255	Radical Scavenging Reactivity of Catecholamine Neurotransmitters and the Inhibition Effect for DNA Cleavage. Journal of Physical Chemistry B, 2010, 114, 675-680.	1.2	52
256	Lewis Acid-Induced Change from Four- to Two-Electron Reduction of Dioxygen Catalyzed by Copper Complexes Using Scandium Triflate. Journal of the American Chemical Society, 2015, 137, 3330-3337.	6.6	52
257	Peroxo and Superoxo Moieties Bound to Copper Ion: Electron-Transfer Equilibrium with a Small Reorganization Energy. Journal of the American Chemical Society, 2016, 138, 7055-7066.	6.6	52
258	Factors Controlling the Chemoselectivity in the Oxidation of Olefins by Nonheme Manganese(IV)-Oxo Complexes. Journal of the American Chemical Society, 2016, 138, 10654-10663.	6.6	52
259	A Mechanistic Dichotomy in Scandium Ion-Promoted Hydride Transfer of an NADH Analogue:Â Delicate Balance between One-Step Hydride-Transfer and Electron-Transfer Pathways. Journal of the American Chemical Society, 2006, 128, 14938-14948.	6.6	51
260	Shape―and Sizeâ€Controlled Nanomaterials for Artificial Photosynthesis. ChemSusChem, 2013, 6, 1834-1847.	3.6	51
261	Efficient Epoxidation of Styrene Derivatives by a Nonheme Iron(IV)-Oxo Complex via Proton-Coupled Electron Transfer with Triflic Acid. Inorganic Chemistry, 2015, 54, 5806-5812.	1.9	51
262	Recent progress in production and usage of hydrogen peroxide. Chinese Journal of Catalysis, 2021, 42, 1241-1252.	6.9	51
263	Oxidation Mechanism of NAD Dimer Model Compounds. Chemistry Letters, 1997, 26, 567-568.	0.7	50
264	Remarkable Accelerating Effects of Ammonium Cations on Electron-Transfer Reactions of Quinones by Hydrogen Bonding with Semiquinone Radical Anions. Journal of Physical Chemistry A, 2004, 108, 10405-10413.	1.1	50
265	Long-Lived Charge-Separated Configuration of a Pushâ~'Pull Archetype of Disperse Red 1 End-Capped Poly[9,9-Bis(4-diphenylaminophenyl)fluorene]. Journal of the American Chemical Society, 2009, 131, 6370-6371.	6.6	50
266	Photoinduced Electron Transfer in a Charge-Transfer Complex Formed between Corannulene and Li ⁺ @C ₆₀ by Concave–Convex π–π Interactions. Journal of the American Chemical Society, 2014, 136, 13240-13248.	6.6	50
267	Structure and reactivity of the first-row d-block metal-superoxo complexes. Dalton Transactions, 2019, 48, 9469-9489.	1.6	50
268	Enhanced Photoinduced Electron-Transfer Reduction of Li+@C60 in Comparison with C60. Journal of Physical Chemistry A, 2012, 116, 8942-8948.	1.1	49
269	Photocatalytic Oxidation of Organic Compounds in Water by Using Ruthenium(II)–Pyridylamine Complexes as Catalysts with High Efficiency and Selectivity. Chemistry - A European Journal, 2013, 19, 1563-1567.	1.7	49
270	High-Valent Chromium–Oxo Complex Acting as an Efficient Catalyst Precursor for Selective Two-Electron Reduction of Dioxygen by a Ferrocene Derivative. Inorganic Chemistry, 2014, 53, 7780-7788.	1.9	49

#	Article	IF	CITATIONS
271	Direct Observation of Radical Intermediates While Investigating the Redox Behavior of Thiamin Coenzyme Models. Angewandte Chemie - International Edition, 1998, 37, 992-994.	7.2	48
272	Formation of superoxide–metal ion complexes and the electron transfer catalysis. Coordination Chemistry Reviews, 2002, 226, 71-80.	9.5	48
273	Submillisecond-lived photoinduced charge separation in inclusion complexes composed of Li+@C60 and cyclic porphyrin dimers. Chemical Science, 2013, 4, 1451.	3.7	48
274	Mechanistic Insights into Homogeneous Electrocatalytic and Photocatalytic Hydrogen Evolution Catalyzed by High-Spin Ni(II) Complexes with S ₂ N ₂ -Type Tetradentate Ligands. Inorganic Chemistry, 2018, 57, 7180-7190.	1.9	47
275	Metal ion-coupled electron-transfer reactions of metal-oxygen complexes. Coordination Chemistry Reviews, 2020, 410, 213219.	9.5	47
276	Protonated pteridine and flavin analogues acting as efficient and substrate-selective photocatalysts in the oxidation of benzyl alcohol derivatives by oxygen. Journal of the Chemical Society Chemical Communications, 1989, , 816.	2.0	46
277	Control of redox reactivity of flavin and pterin coenzymes by metal ion coordination and hydrogen bonding. Journal of Biological Inorganic Chemistry, 2008, 13, 321-333.	1.1	46
278	Photoconductivity of Porphyrin Nanochannels Composed of Diprotonated Porphyrin Dications with Saddle Distortion and Electron Donors. Chemistry of Materials, 2008, 20, 7492-7500.	3.2	46
279	Photocatalytic Monofluorination of Benzene by Fluoride via Photoinduced Electron Transfer with 3-Cyano-1-methylquinolinium. Journal of Physical Chemistry A, 2013, 117, 10719-10725.	1.1	46
280	Photocatalytic Hydroxylation of Benzene by Dioxygen to Phenol with a Cyano-Bridged Complex Containing Fe ^{II} and Ru ^{II} Incorporated in Mesoporous Silica–Alumina. Inorganic Chemistry, 2016, 55, 5780-5786.	1.9	46
281	Selective Oxygenation of Cyclohexene by Dioxygen via an Iron(V)-Oxo Complex-Autocatalyzed Reaction. Inorganic Chemistry, 2017, 56, 5096-5104.	1.9	46
282	Fine Control of the Redox Reactivity of a Nonheme Iron(III)–Peroxo Complex by Binding Redoxâ€Inactive Metal Ions. Angewandte Chemie - International Edition, 2017, 56, 801-805.	7.2	46
283	Mechanism of acid-catalysed reduction of aromatic aldehydes and p-benzoquinone derivatives by an nadh model compound. Tetrahedron, 1986, 42, 1021-1034.	1.0	45
284	Acid catalysis in thermal and photoinduced electron-transfer reactions. Journal of the Chemical Society Perkin Transactions II, 1987, , 751.	0.9	45
285	Remarkable enhancement of photocurrent generation by ITO electrodes modified with a self-assembled monolayer of porphyrin. Chemical Communications, 2000, , 1921-1922.	2.2	45
286	Scandium Ion-Promoted Reduction of Heterocyclic NN Double Bond. Hydride Transfer vs Electron Transfer. Journal of the American Chemical Society, 2002, 124, 12566-12573.	6.6	45
287	Utilization of Photoinduced Charge-Separated State of Donor–Acceptor-Linked Molecules for Regulation of Cell Membrane Potential and Ion Transport. Journal of the American Chemical Society, 2012, 134, 6092-6095.	6.6	45
288	Photoinduced Electron Transfer in 9‣ubstituted 10â€Methylacridinium Ions. Chemistry - A European Journal, 2017, 23, 1306-1317.	1.7	45

#	Article	IF	CITATIONS
289	Highly Self-Organized Electron Transfer from an Iridium Complex top-Benzoquinone Due to Formation of a π-Dimer Radical Anion Complex Triply Bridged by Scandium Ions. Journal of the American Chemical Society, 2003, 125, 12090-12091.	6.6	44
290	Metal Ion-coupled Electron-transfer Reduction of Dioxygen. Chemistry Letters, 2008, 37, 808-813.	0.7	44
291	Synthesis and photochemical properties of α-diketoporphyrins as precursors for π-expanded porphyrins. Journal of Materials Chemistry, 2010, 20, 3011.	6.7	44
292	Switchover of the Mechanism between Electron Transfer and Hydrogenâ€Atom Transfer for a Protonated Manganese(IV)–Oxo Complex by Changing Only the Reaction Temperature. Angewandte Chemie - International Edition, 2016, 55, 7450-7454.	7.2	44
293	Metal and size effects on structures and photophysical properties of porphyrin-modified metal nanoclusters. Journal of Materials Chemistry, 2003, 13, 2890.	6.7	43
294	Much Enhanced Catalytic Reactivity of Cobalt Chlorin Derivatives on Two-Electron Reduction of Dioxygen to Produce Hydrogen Peroxide. Inorganic Chemistry, 2015, 54, 1808-1815.	1.9	43
295	Artificial photosynthetic systems for production of hydrogen. Current Opinion in Chemical Biology, 2015, 25, 18-26.	2.8	43
296	Electron-Transfer and Redox Reactivity of High-Valent Iron Imido and Oxo Complexes with the Formal Oxidation States of Five and Six. Journal of the American Chemical Society, 2020, 142, 3891-3904.	6.6	43
297	Contrasting Effects of Axial Ligands on Electronâ€Transfer Versus Protonâ€Coupled Electronâ€Transfer Reactions of Nonheme Oxoiron(IV) Complexes. Chemistry - A European Journal, 2010, 16, 354-361.	1.7	42
298	Kinetics and mechanisms of catalytic water oxidation. Dalton Transactions, 2019, 48, 779-798.	1.6	42
299	Driving Force Dependence of Photoinduced Electron Transfer Dynamics of Intercalated Molecules in DNA. Journal of Physical Chemistry B, 2003, 107, 12511-12518.	1.2	41
300	Copper(I)â€Dioxygen Reactivity in a Sterically Demanding Tripodal Tetradentate tren Ligand: Formation and Reactivity of a Mononuclear Copper(II) Endâ€On Superoxo Complex. European Journal of Inorganic Chemistry, 2012, 2012, 4574-4578.	1.0	41
301	Electron transfer and catalysis with high-valent metal-oxo complexes. Dalton Transactions, 2015, 44, 6696-6705.	1.6	41
302	A Bispidine Iron(IV)–Oxo Complex in the Entatic State. Angewandte Chemie - International Edition, 2016, 55, 11129-11133.	7.2	41
303	Highly Efficient Catalytic Two-Electron Two-Proton Reduction of Dioxygen to Hydrogen Peroxide with a Cobalt Corrole Complex. ACS Catalysis, 2021, 11, 3073-3083.	5.5	41
304	Multielectron Oxidation of Anthracenes with a One-Electron Oxidant via Water-Accelerated Electron-Transfer Disproportionation of the Radical Cations as the Rate-Determining Step. Journal of Physical Chemistry A, 1999, 103, 11212-11220.	1.1	40
305	Multiple photosynthetic reaction centres using zinc porphyrinic oligopeptide–fulleropyrrolidine supramolecular complexes. Physical Chemistry Chemical Physics, 2011, 13, 17019.	1.3	40
306	Oxygenation and chlorination of aromatic hydrocarbons with hydrochloric acid photosensitized by 9-mesityl-10-methylacridinium under visible light irradiation. Research on Chemical Intermediates, 2013, 39, 205-220.	1.3	40

#	Article	IF	CITATIONS
307	Electrochemical reduction of cationic Li ⁺ @C ₆₀ to neutral Li ⁺ @C ₆₀ Ë™ ^{â^`} : isolation and characterisation of endohedral [60]fulleride. Chemical Science, 2016, 7, 5770-5774.	3.7	40
308	Selective CO Production in Photoelectrochemical Reduction of CO ₂ with a Cobalt Chlorin Complex Adsorbed on Multiwalled Carbon Nanotubes in Water. ACS Energy Letters, 2017, 2, 532-536.	8.8	40
309	Long-Lived Photoexcited State of a Mn(IV)-Oxo Complex Binding Scandium Ions That is Capable of Hydroxylating Benzene. Journal of the American Chemical Society, 2018, 140, 8405-8409.	6.6	39
310	Reactions of Carbocations withï€ Nucleophiles: Polar Mechanism and No Outer Sphere Electron Transfer. Angewandte Chemie International Edition in English, 1995, 34, 1225-1227.	4.4	38
311	Photodriven Electron Transport within the Columnar Perylenediimide Nanostructures Self-Assembled with Sulfonated Porphyrins in Water. Journal of Physical Chemistry C, 2012, 116, 23274-23282.	1.5	38
312	Efficient Charge Separation in Li ⁺ @C ₆₀ Supramolecular Complexes with Electron Donors. Chemistry - an Asian Journal, 2015, 10, 44-54.	1.7	38
313	A supramolecular photocatalyst composed of a polyoxometalate and a photosensitizing water-soluble porphyrin diacid for the oxidation of organic substrates in water. Green Chemistry, 2018, 20, 1975-1980.	4.6	38
314	Catalytic recycling of NAD(P)H. Journal of Inorganic Biochemistry, 2019, 199, 110777.	1.5	38
315	Unified Mechanism of Oxygen Atom Transfer and Hydrogen Atom Transfer Reactions with a Triflic Acid-Bound Nonheme Manganese(Ⅳ)–Oxo Complex via Outer-Sphere Electron Transfer. Journal of the American Chemical Society, 2019, 141, 2614-2622.	6.6	38
316	Complex formation between NADH model compounds and metalloporphyrins. Journal of the Chemical Society Perkin Transactions II, 1989, , 1753.	0.9	37
317	Construction of Sn ^{IV} Porphyrin/Trinuclear Ruthenium Cluster Dyads Linked by Pyridine Carboxylates: Photoinduced Electron Transfer in the Marcus Inverted Region. Chemistry - A European Journal, 2010, 16, 3646-3655.	1.7	37
318	Synthetic control over intra- and intermolecular charge transfer can turn on the fluorescence emission of non-emissive coumarin. Journal of Materials Chemistry C, 2016, 4, 4556-4567.	2.7	37
319	Dual function photocatalysis of cyano-bridged heteronuclear metal complexes for water oxidation and two-electron reduction of dioxygen to produce hydrogen peroxide as a solar fuel. Chemical Communications, 2017, 53, 3473-3476.	2.2	37
320	Formation of hydrogen peroxide from coal tar as hydrogen sources using 9-mesityl-10-methylacridinium ion as an effective photocatalyst. Applied Catalysis B: Environmental, 2008, 77, 317-324.	10.8	36
321	Electron-transfer properties of a nonheme manganese(iv)–oxo complex acting as a stronger one-electron oxidant than the iron(iv)–oxo analogue. Chemical Communications, 2012, 48, 11187.	2.2	36
322	Photocatalytic Oxygenation of 10-Methyl-9,10-dihydroacridine by O ₂ with Manganese Porphyrins. Journal of Physical Chemistry A, 2014, 118, 6223-6229.	1.1	36
323	Effects of magnesium ion on Rinetic stability and spin distribution of phenoxyl radical derived from a vitamin E analogue: mechanistic insight into antioxidative hydrogen-transfer reaction of vitamin EElectronic supplementary information available: calculated spin density distributions and dependence of kHT on [Mg2+] for hydrogen transfer. See http://www.rsc.org/suppdata/p2/b2/b205380b/.	1.1	35
324	Perrin Transactions in resc. 2002, , 1520-1524. Organization of supramolecular assembly of 9-mesityl-10-carboxymethylacridinium ion and fullerene clusters on TiO2 nanoparticles for light energy conversion. Journal of Materials Chemistry, 2005, 15, 372.	6.7	35

#	Article	IF	CITATIONS
325	Androgynous Porphyrins. Silver(II) Quinoxalinoporphyrins Act as Both Good Electron Donors and Acceptors. Journal of the American Chemical Society, 2008, 130, 9451-9458.	6.6	35
326	Supramolecular donor–acceptor assemblies composed of carbon nanodiamond and porphyrin for photoinduced electron transfer and photocurrent generation. Journal of Materials Chemistry, 2010, 20, 582-587.	6.7	35
327	Remarkable enhancement of catalytic activity of a 2 : 1 complex between a non-planar Mo(v)–porphyri and a ruthenium-substituted Keggin-type heteropolyoxometalate in catalytic oxidation of benzyl alcohols. Dalton Transactions, 2012, 41, 10006.	n 1.6	35
328	Immobilization of Molecular Catalysts for Enhanced Redox Catalysis. ChemCatChem, 2018, 10, 1686-1702.	1.8	35
329	Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coordination Chemistry Reviews, 2021, 435, 213807.	9.5	35
330	Photochemical Activation of Ruthenium(II)–Pyridylamine Complexes Having a Pyridine- <i>N</i> -Oxide Pendant toward Oxygenation of Organic Substrates. Journal of the American Chemical Society, 2011, 133, 17901-17911.	6.6	34
331	Photochemical Oxidation of a Manganese(III) Complex with Oxygen and Toluene Derivatives to Form a Manganese(V)-Oxo Complex. Inorganic Chemistry, 2013, 52, 13594-13604.	1.9	34
332	Autocatalytic Formation of an Iron(IV)–Oxo Complex via Scandium Ion-Promoted Radical Chain Autoxidation of an Iron(II) Complex with Dioxygen and Tetraphenylborate. Journal of the American Chemical Society, 2014, 136, 8042-8049.	6.6	34
333	A Mononuclear Non-heme Manganese(III)–Aqua Complex as a New Active Oxidant in Hydrogen Atom Transfer Reactions. Journal of the American Chemical Society, 2018, 140, 12695-12699.	6.6	34
334	A Highâ€Valent Manganese(IV)–Oxo–Cerium(IV) Complex and Its Enhanced Oxidizing Reactivity. Angewandte Chemie - International Edition, 2019, 58, 16124-16129.	7.2	34
335	Photocatalytic Oxygenation Reactions with a Cobalt Porphyrin Complex Using Water as an Oxygen Source and Dioxygen as an Oxidant. Journal of the American Chemical Society, 2019, 141, 9155-9159.	6.6	34
336	ELECTRON TRANSFER IN ORGANIC REACTIONS. Journal of Physical Organic Chemistry, 1997, 10, 129-137.	0.9	33
337	Effects of Metal Ions on the Electronic, Redox, and Catalytic Properties of Cofactor TTQ of Quinoprotein Amine Dehydrogenases. Journal of the American Chemical Society, 2000, 122, 12087-12097.	6.6	33
338	Catalytic control of electron-transfer processes. Pure and Applied Chemistry, 2003, 75, 577-587.	0.9	33
339	Mechanistic study on dimerization of acetylene with a Nieuwland catalyst. Applied Organometallic Chemistry, 2008, 22, 205-210.	1.7	33
340	Acetate Induced Enhancement of Photocatalytic Hydrogen Peroxide Production from Oxalic Acid and Dioxygen. Journal of Physical Chemistry A, 2013, 117, 3751-3760.	1.1	33
341	Ultrafast photoinduced electron transfer in face-to-face charge-transfer ï€-complexes of planar porphyrins and hexaazatriphenylene derivatives. Chemical Science, 2015, 6, 1498-1509.	3.7	33
342	Catalytic Two-Electron Reduction of Dioxygen by Ferrocene Derivatives with Manganese(V) Corroles. Inorganic Chemistry, 2015, 54, 4285-4291.	1.9	33

#	Article	IF	CITATIONS
343	Photocatalytic Oxygenation Reactions Using Water and Dioxygen. ChemSusChem, 2019, 12, 3931-3940.	3.6	33
344	Photocatalytic oxygenation of olefins with oxygenIsolation of 1,2-dioxetane and the photocatalytic O–O bond cleavage. Catalysis Today, 2006, 117, 356-361.	2.2	32
345	Subphthalocyanines as Light-Harvesting Electron Donor and Electron Acceptor in Artificial Photosynthetic Systems. Journal of Physical Chemistry C, 2012, 116, 19709-19717.	1.5	32
346	Thermal and Photocatalytic Production of Hydrogen Peroxide and its Use in Hydrogen Peroxide Fuel Cells. Australian Journal of Chemistry, 2014, 67, 354.	0.5	32
347	Photocatalytic reduction of CO ₂ and H ₂ O to CO and H ₂ with a cobalt chlorin complex adsorbed on multi-walled carbon nanotubes. Catalysis Science and Technology, 2016, 6, 4077-4080.	2.1	32
348	Effect of Metalation on Porphyrin-Based Bifunctional Agents in Tumor Imaging and Photodynamic Therapy. Bioconjugate Chemistry, 2016, 27, 667-680.	1.8	32
349	Molecular Photocatalytic Water Splitting by Mimicking Photosystems I and II. Journal of the American Chemical Society, 2022, 144, 695-700.	6.6	32
350	Involvement of Electron Transfer in the Radical-scavenging Reaction of Resveratrol. Chemistry Letters, 2007, 36, 1276-1277.	0.7	31
351	Catalytic Electronâ€Transfer Oxygenation of Substrates with Water as an Oxygen Source Using Manganese Porphyrins. Chemistry - A European Journal, 2012, 18, 15794-15804.	1.7	31
352	Tunneling Controls the Reaction Pathway in the Deformylation of Aldehydes by a Nonheme Iron(III)–Hydroperoxo Complex: Hydrogen Atom Abstraction versus Nucleophilic Addition. Journal of the American Chemical Society, 2019, 141, 7675-7679.	6.6	31
353	Primary kinetic isotope effects on acid-catalysed reduction of p-benzoquinone derivatives by an acid-stable NADH analogue. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 3531.	1.7	30
354	Enhanced Reactivity of C70in the Photochemical Reactions with NADH and NAD Dimer Analogues As Compared to C60via Photoinduced Electron Transfer. Journal of Physical Chemistry A, 1999, 103, 5935-5941.	1.1	30
355	Characterization of imidazolate-bridged Cu(ii)–Zn(ii) heterodinuclear and Cu(ii)–Cu(ii) homodinuclear hydroperoxo complexes as reaction intermediate models of Cu,Zn–SOD. Chemical Communications, 2000, , 1051-1052.	2.2	30
356	Intermolecular and Intracomplex Photoinduced Electron Transfer from Planar and Nonplanar Metalloporphyrins to <i>p</i> â€Quinones. Chemistry - A European Journal, 2011, 17, 12372-12384.	1.7	30
357	Photocatalytic production of hydrogen peroxide by two-electron reduction of dioxygen with carbon-neutral oxalate using a 2-phenyl-4-(1-naphthyl)quinolinium ion as a robust photocatalyst. Chemical Communications, 2012, 48, 8329.	2.2	30
358	The long-lived electron transfer state of the 2-phenyl-4-(1-naphthyl)quinolinium ion incorporated into nanosized mesoporous silica–alumina acting as a robust photocatalyst in water. Chemical Communications, 2013, 49, 5132.	2.2	30
359	Electron-Transfer Reduction Properties and Excited-State Dynamics of Benzo[<i>ghi</i>]peryleneimide and Coroneneimide Derivatives. Journal of Physical Chemistry C, 2014, 118, 7710-7720.	1.5	30
360	Selective hydroxylation of benzene derivatives and alkanes with hydrogen peroxide catalysed by a manganese complex incorporated into mesoporous silica–alumina. Chemical Communications, 2015, 51, 4662-4665.	2.2	30

#	Article	IF	CITATIONS
361	Mn(III)-Iodosylarene Porphyrins as an Active Oxidant in Oxidation Reactions: Synthesis, Characterization, and Reactivity Studies. Inorganic Chemistry, 2018, 57, 10232-10240.	1.9	30
362	Stepwise vs. concerted pathways in scandium ion-coupled electron transfer from superoxide ion to p-benzoquinone derivatives. Physical Chemistry Chemical Physics, 2011, 13, 3344.	1.3	29
363	Artificial Photosynthesis for Production of ATP, NAD(P)H, and Hydrogen Peroxide. ChemPhotoChem, 2018, 2, 121-135.	1.5	29
364	Catalytic two-electron reduction of dioxygen catalysed by metal-free [14]triphyrin(2.1.1). Chemical Science, 2015, 6, 6496-6504.	3.7	28
365	Photocatalytic H2 evolution from NADH with carbon quantum dots/Pt and 2-phenyl-4-(1-naphthyl)quinolinium ion. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 63-70.	1.7	28
366	The sensitivity of donor – acceptor charge transfer to molecular geometry in DAN – NDI based supramolecular flower-like self-assemblies. Scientific Reports, 2017, 7, 16501.	1.6	28
367	Acid Catalysis via Acidâ€Promoted Electron Transfer. Bulletin of the Korean Chemical Society, 2020, 41, 1217-1232.	1.0	28
368	Manganese(v)–oxo corroles in hydride-transfer reactions. Chemical Communications, 2010, 46, 8160.	2.2	27
369	Enhanced Electron Transfer Reactivity of a Nonheme Iron(IV)–Imido Complex as Compared to the Iron(IV)â€Oxo Analogue. Angewandte Chemie - International Edition, 2016, 55, 3709-3713.	7.2	27
370	Photocatalytic Oxygenation of Substrates by Dioxygen with Protonated Manganese(III) Corrolazine. Inorganic Chemistry, 2016, 55, 3218-3228.	1.9	27
371	Remarkable Acid Catalysis in Proton-Coupled Electron-Transfer Reactions of a Chromium(III)-Superoxo Complex. Journal of the American Chemical Society, 2018, 140, 8372-8375.	6.6	27
372	Change in Supramolecular Networks through In Situ Esterification of Porphyrins. European Journal of Inorganic Chemistry, 2009, 2009, 5494-5505.	1.0	26
373	Synthesis and Photodynamics of 9-Mesitylacridinium Ion-Modified Gold Nanoclusters. Journal of the American Chemical Society, 2010, 132, 11002-11003.	6.6	26
374	Enzyme repurposing of a hydrolase as an emergent peroxidase upon metal binding. Chemical Science, 2015, 6, 4060-4065.	3.7	26
375	Production of hydrogen peroxide by combination of semiconductor-photocatalysed oxidation of water and photocatalytic two-electron reduction of dioxygen. RSC Advances, 2016, 6, 42041-42044.	1.7	26
376	Photocatalytic water oxidation by persulphate with a Ca ²⁺ ion-incorporated polymeric cobalt cyanide complex affording O ₂ with 200% quantum efficiency. Chemical Communications, 2017, 53, 3418-3421.	2.2	26
377	Mimicry and functions of photosynthetic reaction centers. Biochemical Society Transactions, 2018, 46, 1279-1288.	1.6	26
378	Metalloporphyrin-Catalyzed Reduction of Dioxygen by Ferrocene Derivatives. Chemistry Letters, 1989, 18, 27-30.	0.7	25

#	Article	IF	CITATIONS
379	Decreased Electron Transfer Rates of Manganese Porphyrins with Conformational Distortion of the Macrocycle. Angewandte Chemie - International Edition, 1999, 38, 964-966.	7.2	25
380	Electron Transfer Properties of Singlet Oxygen and Promoting Effects of Scandium Ion. Journal of Physical Chemistry A, 2002, 106, 1241-1247.	1.1	25
381	Chlorine atom substitution influences radical scavenging activity of 6-chromanol. Bioorganic and Medicinal Chemistry, 2012, 20, 4049-4055.	1.4	25
382	Enhancement of Photodriven Charge Separation by Conformational and Intermolecular Adaptations of an Anthracene–Perylenediimide–Anthracene Triad to an Aqueous Environment. Journal of Physical Chemistry C, 2013, 117, 12438-12445.	1.5	25
383	Long-lived charge-separated states produced in supramolecular complexes between anionic and cationic porphyrins. Chemical Science, 2014, 5, 3888-3896.	3.7	25
384	Mechanism of a one-photon two-electron process in photocatalytic hydrogen evolution from ascorbic acid with a cobalt chlorin complex. Chemical Communications, 2015, 51, 15145-15148.	2.2	25
385	Formation of Ground State Triplet Diradicals from Annulated Rosarin Derivatives by Triprotonation. Journal of the American Chemical Society, 2015, 137, 9780-9783.	6.6	25
386	Photodriven Oxidation of Water by Plastoquinone Analogs with a Nonheme Iron Catalyst. Journal of the American Chemical Society, 2019, 141, 6748-6754.	6.6	25
387	Direct Detection of Radical Cations of NADH Analogues. Journal of the American Chemical Society, 2002, 124, 14538-14539.	6.6	24
388	Effects of Proton Acceptors on Formation of a Non-Heme Iron(IV)–Oxo Complex via Proton-Coupled Electron Transfer. Inorganic Chemistry, 2013, 52, 3094-3101.	1.9	24
389	Formation of the Long-Lived Charge-Separated State of the 9-Mesityl-10-methylacridinium Cation Incorporated into Mesoporous Aluminosilicate at High Temperatures. Journal of Physical Chemistry C, 2014, 118, 24188-24196.	1.5	24
390	An amphoteric reactivity of a mixed-valent bis(μ-oxo)dimanganese(<scp>iii</scp> , <scp>iv</scp>) complex acting as an electrophile and a nucleophile. Dalton Transactions, 2016, 45, 376-383.	1.6	24
391	Deuterium kinetic isotope effects as redox mechanistic criterions. Bulletin of the Korean Chemical Society, 2021, 42, 1558-1568.	1.0	24
392	Significant Enhancement of Electron Transfer Reduction of NAD+Analogues by Complexation with Scandium Ion and the Detection of the Radical Intermediateâ^'Scandium Ion Complex. Journal of the American Chemical Society, 2002, 124, 9181-9188.	6.6	23
393	Proton-Coupled Electron Transfer of Unsaturated Fatty Acids and Mechanistic Insight into Lipoxygenase. Helvetica Chimica Acta, 2006, 89, 2425-2440.	1.0	23
394	Tunneling Effect That Changes the Reaction Pathway from Epoxidation to Hydroxylation in the Oxidation of Cyclohexene by a Compound I Model of Cytochrome P450. Journal of Physical Chemistry Letters, 2017, 8, 1557-1561.	2.1	23
395	Aqueous Transformation of a Metal Diformate to a Metal Dihydride Carbonyl Complex Accompanied by H2 Evolution from the Formato Ligands. Organometallics, 2005, 24, 4816-4823.	1.1	22
396	Synthetically tuneable biomimetic artificial photosynthetic reaction centres that closely resemble the natural system in purple bacteria. Chemical Science, 2016, 7, 6534-6550.	3.7	22

#	Article	IF	CITATIONS
397	Multiâ€Electron Oxidation of Anthracene Derivatives by Nonheme Manganese(IV)â€Oxo Complexes. Chemistry - A European Journal, 2017, 23, 7125-7131.	1.7	22
398	A Mononuclear Nonheme Iron(IV)–Amido Complex Relevant for the Compound II Chemistry of Cytochrome P450. Journal of the American Chemical Society, 2019, 141, 80-83.	6.6	22
399	A mechanistic dichotomy in concerted <i>versus</i> stepwise pathways in hydride and hydrogen transfer reactions of NADH analogues. Journal of Physical Organic Chemistry, 2008, 21, 886-896.	0.9	21
400	Photoinduced electron transfer in a carbon nanohorn–C60 conjugate. Chemical Science, 2014, 5, 2072.	3.7	21
401	Mechanistic insights into the reactions of hydride transfer versus hydrogen atom transfer by a trans-dioxoruthenium(<scp>vi</scp>) complex. Dalton Transactions, 2015, 44, 7634-7642.	1.6	21
402	Laser-Induced Dynamics of Peroxodicopper(II) Complexes Vary with the Ligand Architecture. One-Photon Two-Electron O ₂ Ejection and Formation of Mixed-Valent Cu ^I Cu ^{II} –Superoxide Intermediates. Journal of the American Chemical Society, 2015, 137, 15865-15874.	6.6	21
403	On–off switch of charge-separated states of pyridine-vinylene-linked porphyrin–C ₆₀ conjugates detected by EPR. Chemical Science, 2015, 6, 5994-6007.	3.7	21
404	Aromatic Monochlorination Photosensitized by DDQ with Hydrogen Chloride under Visible‣ight Irradiation. Chemistry - an Asian Journal, 2016, 11, 996-999.	1.7	21
405	Tuning Electron-Transfer Reactivity of a Chromium(III)–Superoxo Complex Enabled by Calcium Ion and Other Redox-Inactive Metal Ions. Journal of the American Chemical Society, 2020, 142, 365-372.	6.6	21
406	Bioinspired artificial photosynthesis systems. Tetrahedron, 2020, 76, 131024.	1.0	21
407	Two-electron and four-electron reduction of dioxygen with an NADH model compound, catalysed by metalloporphyrins in the presence of perchloric acid in acetonitrile. Journal of the Chemical Society Chemical Communications, 1989, , 391.	2.0	20
408	Structure and photoelectrochemical properties of ITO electrodes modified with self-assembled monolayers of meso, meso-linked porphyrin oligomers. Journal of Porphyrins and Phthalocyanines, 2003, 07, 296-312.	0.4	20
409	Implementation of redox gradients in hydrogen bonded complexes containing N,N-dimethylaniline, flavin and fullerene derivatives. Journal of Materials Chemistry, 2010, 20, 1457-1466.	6.7	20
410	Formic Acid Acting as an Efficient Oxygen Scavenger in Four-Electron Reduction of Oxygen Catalyzed by a Heterodinuclear Iridiumâ^'Ruthenium Complex in Water. Journal of the American Chemical Society, 2010, 132, 11866-11867.	6.6	20
411	A simple zinc-porphyrin-NDI dyad system generates a light energy to proton potential across a lipid membrane. Dyes and Pigments, 2015, 120, 340-346.	2.0	20
412	Catalytic Hydroxylation of Benzene to Phenol by Dioxygen with an NADH Analogue. Chemistry - A European Journal, 2016, 22, 12904-12909.	1.7	20
413	Light harvesting a gold porphyrin—zinc phthalocyanine supramolecular donor—acceptor dyad. Photochemical and Photobiological Sciences, 2016, 15, 1340-1346.	1.6	20
414	Enhanced Redox Reactivity of a Nonheme Iron(V)–Oxo Complex Binding Proton. Journal of the American Chemical Society, 2020, 142, 15305-15319.	6.6	20

#	Article	IF	CITATIONS
415	Photoinduced energy transfer in mixed self-assembled monolayers of pyrene and porphyrin. Chemical Communications, 2000, , 661-662.	2.2	19
416	Synergistic effects of Ni and Cu supported on TiO2 and SiO2 on photocatalytic H2 evolution with an electron donor–acceptor linked molecule. Catalysis Science and Technology, 2015, 5, 979-988.	2.1	19
417	Catalytic Formation of Hydrogen Peroxide from Coenzyme NADH and Dioxygen with a Water-Soluble Iridium Complex and a Ubiquinone Coenzyme Analogue. Inorganic Chemistry, 2016, 55, 7747-7754.	1.9	19
418	Direct oxygen atom transfer versus electron transfer mechanisms in the phosphine oxidation by nonheme Mn(<scp>iv</scp>)-oxo complexes. Chemical Communications, 2017, 53, 9352-9355.	2.2	19
419	Thermal and photocatalytic oxidation of organic substrates by dioxygen with water as an electron source. Green Chemistry, 2018, 20, 948-963.	4.6	19
420	Structure and Unprecedented Reactivity of a Mononuclear Nonheme Cobalt(III) Iodosylbenzene Complex. Angewandte Chemie - International Edition, 2020, 59, 13581-13585.	7.2	19
421	A Mononuclear Non-Heme Manganese(III)–Aqua Complex in Oxygen Atom Transfer Reactions via Electron Transfer. Journal of the American Chemical Society, 2021, 143, 1521-1528.	6.6	19
422	Photoinduced electron transfer in supramolecular complexes of a π-extended viologen with porphyrin monomer and dimer. RSC Advances, 2012, 2, 3741.	1.7	18
423	An autocatalytic radical chain pathway in formation of an iron(iv)–oxo complex by oxidation of an iron(ii) complex with dioxygen and isopropanol. Chemical Communications, 2013, 49, 2500.	2.2	18
424	Catalytic reduction of proton, oxygen and carbon dioxide with cobalt macrocyclic complexes. Journal of Porphyrins and Phthalocyanines, 2016, 20, 935-949.	0.4	18
425	Determination of the cross propagation rate constants in the autoxidation of hydrocarbons by the electron spin resonance technique. The Journal of Physical Chemistry, 1977, 81, 1895-1900.	2.9	17
426	Direct detection of superoxide anion generated in C60-photosensitized oxidation of NADH and an an an an an an an	1.1	17
427	Crystallographic report: Crystal structures of organometallic aqua complexes [Cp*RhIII(bpy)(OH2)]2+ and [Cp*RhIII(6,6â€-Me2bpy)(OH2)]2+ used as key catalysts in regioselective reduction of NAD+ analogues. Applied Organometallic Chemistry, 2005, 19, 639-643.	1.7	17
428	Porphyrin-Based Molecular Architectures for Light Energy Conversion. Molecular Crystals and Liquid Crystals, 2007, 471, 39-51.	0.4	17
429	Photoinduced electron transfer in supramolecular assemblies involving saddle-distorted porphyrins and phthalocyanines. Journal of Porphyrins and Phthalocyanines, 2009, 13, 14-21.	0.4	17
430	Photodynamics in stable complexes composed of a zinc porphyrin tripod and pyridyl porphyrins assembled by multiple coordination bonds. Physical Chemistry Chemical Physics, 2010, 12, 12160.	1.3	17
431	Broadband Light Harvesting and Fast Charge Separation in Ordered Self-Assemblies of Electron Donor–Acceptor-Functionalized Graphene Oxide Layers for Effective Solar Energy Conversion. Journal of Physical Chemistry C, 2015, 119, 13488-13495.	1.5	17
432	Near-Infrared Photoelectrochemical Conversion via Photoinduced Charge Separation in Supramolecular Complexes of Anionic Phthalocyanines with Li+@C60. Journal of Physical Chemistry B, 2015, 119, 7690-7697.	1.2	17

#	Article	IF	CITATIONS
433	Nanocarbons as Electron Donors and Acceptors in Photoinduced Electron-Transfer Reactions. ECS Journal of Solid State Science and Technology, 2017, 6, M3055-M3061.	0.9	17
434	A Chromium(III)-Superoxo Complex as a Three-Electron Oxidant with a Large Tunneling Effect in Multi-Electron Oxidation of NADH Analogues. Angewandte Chemie - International Edition, 2017, 56, 3510-3515.	7.2	17
435	Autocatalytic dioxygen activation to produce an iron(<scp>v</scp>)-oxo complex without any reductants. Chemical Communications, 2017, 53, 8348-8351.	2.2	17
436	Photocatalytic redox reactions with metalloporphyrins. Journal of Porphyrins and Phthalocyanines, 2020, 24, 21-32.	0.4	17
437	Unprecedented Reactivities of Highly Reactive Manganese(III)–Iodosylarene Porphyrins in Oxidation Reactions. Journal of the American Chemical Society, 2020, 142, 19879-19884.	6.6	17
438	Pâ€450 Type Activation of Dioxygen by Heterogenized Metal Porphyrins: Comparison with the Corresponding Homogeneous Systems. Israel Journal of Chemistry, 1987, 28, 29-36.	1.0	16
439	Electron transfer in electron donor-acceptor ensembles containing porphyrins and metalloporphyrins. Journal of Porphyrins and Phthalocyanines, 2002, 06, 289-295.	0.4	16
440	Activation of electron transfer reduction of p-benzoquinone derivatives by intermolecular regioselective hydrogen bond formation. Chemical Communications, 2002, , 1984-1985.	2.2	16
441	Deuterium kinetic isotope effects and H/D exchange in dimerization of acetylene with a Nieuwland catalyst in aqueous media. Journal of Physical Organic Chemistry, 2008, 21, 510-515.	0.9	16
442	Long-lived charge separation in a rigid pentiptycene bis(crown) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 387 Td (et 15796-15798.	her)–Li< 2.2	sup>+ 16
443	A composite photocatalyst of an organic electron donor–acceptor dyad and a Pt catalyst supported on semiconductor nanosheets for efficient hydrogen evolution from oxalic acid. Catalysis Science and Technology, 2015, 5, 428-437.	2.1	16
444	Solubilisation of a 2,2-diphenyl-1-picrylhydrazyl radical in water by β-cyclodextrin to evaluate the radical-scavenging activity of antioxidants in aqueous media. Chemical Communications, 2015, 51, 8311-8314.	2.2	16
445	Assemblies of Boron Dipyrromethene/Porphyrin, Phthalocyanine, and C ₆₀ Moieties as Artificial Models of Photosynthesis: Synthesis, Supramolecular Interactions, and Photophysical Studies. Chemistry - A European Journal, 2018, 24, 3862-3872.	1.7	16
446	Singly Unified Driving Force Dependence of Outer-Sphere Electron-Transfer Pathways of Nonheme Manganese(IV)â^'Oxo Complexes in the Absence and Presence of Lewis Acids. Inorganic Chemistry, 2019, 58, 13761-13765.	1.9	16
447	Deeper Understanding of Mononuclear Manganese(Ⅳ)–Oxo Binding BrÃ,nsted and Lewis Acids and the Manganese(Ⅳ)–Hydroxide Complex. Inorganic Chemistry, 2021, 60, 16996-17007.	1.9	16
448	Enthalpy–Entropy Compensation Effect in Oxidation Reactions by Manganese(IV)-Oxo Porphyrins and Nonheme Iron(IV)-Oxo Models. Journal of the American Chemical Society, 2021, 143, 18559-18570.	6.6	16
449	Electron spin resonance and kinetic studies on the liquid-phase autoxidation of tetralin with lead dioxide. The Journal of Physical Chemistry, 1976, 80, 2973-2978.	2.9	15
450	Reduction of dioxygen by an NADH model compound and 1,1′-dimethylferrocene catalysed by acids in homogeneous and heterogeneous systems. Journal of the Chemical Society Perkin Transactions II, 1989, , 1417-1423.	0.9	15

#	Article	IF	CITATIONS
451	Why do nitrogenases waste electrons by evolving dihydrogen?. Applied Organometallic Chemistry, 2004, 18, 589-594.	1.7	15
452	An extremely long-lived charge-separated state of zinc tetraphenylporphyrin coordinated with pyridylnaphthalene-diimide. Journal of Porphyrins and Phthalocyanines, 2006, 10, 1371-1379.	0.4	15
453	Photoinduced change of dielectric permittivity in molecular doped polymer layer. Applied Physics Letters, 2009, 95, .	1.5	15
454	Improvement of durability of an organic photocatalyst in p-xylene oxygenation by addition of a Cu(ii) complex. Physical Chemistry Chemical Physics, 2012, 14, 9654.	1.3	15
455	Coronenetetraimide entered Cruciform Pentamers Containing Multiporphyrin Units: Synthesis and Sequential Photoinduced Energy―and Electronâ€Transfer Dynamics. Chemistry - A European Journal, 2015, 21, 11196-11205.	1.7	15
456	Modulation of Energy Conversion Processes in Carbonaceous Molecular Bearings. Chemistry - an Asian Journal, 2015, 10, 2404-2410.	1.7	15
457	Cyclic Tetramers of Zinc Chlorophylls as a Coupled Lightâ€Harvesting Antenna–Charge‧eparation System. Chemistry - A European Journal, 2016, 22, 1165-1176.	1.7	15
458	Axially Substituted Silicon Phthalocyanine as Electron Donor in a Dyad and Triad with Azafullerene as Electron Acceptor for Photoinduced Charge Separation. Chemistry - A European Journal, 2016, 22, 15137-15143.	1.7	15
459	Solventâ€Free Photooxidation of Alkanes by Dioxygen with 2,3â€Dichloroâ€5,6â€dicyanoâ€ <i>p</i> â€benzoquine via Photoinduced Electron Transfer. Chemistry - an Asian Journal, 2016, 11, 2255-2259.	one 1.7	15
460	Synthesis of methylated quercetin analogues for enhancement of radical-scavenging activity. RSC Advances, 2017, 7, 17968-17979.	1.7	15
461	Mechanism of Scandium Ion Catalyzed Dielsâ~'Alder Reaction of Anthracenes with Methyl Vinyl Ketone. Journal of Physical Chemistry A, 2005, 109, 3174-3181.	1.1	14
462	C ₆₀ dimers connected through pleiadene bridges: fullerenes talking to each other. Journal of Materials Chemistry, 2011, 21, 1509-1515.	6.7	14
463	Hydride transfer from NADH analogues to a nonheme manganese(<scp>iv</scp>)–oxo complex via rate-determining electron transfer. Chemical Communications, 2014, 50, 12944-12946.	2.2	14
464	Robust Inclusion Complexes of Crown Ether Fused Tetrathiafulvalenes with Li + @C 60 to Afford Efficient Photodriven Charge Separation. Chemistry - A European Journal, 2014, 20, 13976-13983.	1.7	14
465	Tuning the Redox Properties of a Nonheme Iron(III)–Peroxo Complex Binding Redoxâ€Inactive Zinc Ions by Water Molecules. Chemistry - A European Journal, 2015, 21, 10676-10680.	1.7	14
466	Two-phase oxidation of toluene derivatives by dioxygen using the 3-cyano-1-decylquinolinium ion as a photocatalyst. RSC Advances, 2016, 6, 41011-41014.	1.7	14
467	A profluorescent nitroxide probe for ascorbic acid detection and its application to quantitative analysis of diabetic rat plasma. RSC Advances, 2016, 6, 60907-60915.	1.7	14
468	Enhanced Electron-Transfer Reactivity of a Long-Lived Photoexcited State of a Cobalt–Oxygen Complex. Inorganic Chemistry, 2018, 57, 10945-10952.	1.9	14

#	Article	IF	CITATIONS
469	Remarkable effects of counter ions on scandium ion-promoted electron transfer reactions. Chemical Communications, 2003, , 1070-1071.	2.2	13
470	Facile formation of a meso–meso linked porphyrin dimer catalyzed by a manganese(iv)–oxo porphyrin. Chemical Communications, 2011, 47, 6804.	2.2	13
471	Greatly Enhanced Intermolecular Ï€â€Ðimer Formation of a Porphyrin Trimer Radical Trications through Multiple Ï€â€Bonds. Chemistry - A European Journal, 2011, 17, 3420-3428.	1.7	13
472	Hybrid H2-evolution catalysts: in situ formation of H2-evolution catalysts from metal salts inside the mesopores of silica–alumina supporting an organic photosensitiser. RSC Advances, 2013, 3, 25677.	1.7	13
473	Singlet oxygen generation from Li ⁺ @C ₆₀ nano-aggregates dispersed by laser irradiation in aqueous solution. Chemical Communications, 2015, 51, 8082-8085.	2.2	13
474	Size-selective incorporation of donor–acceptor linked dyad cations into zeolite Y and long-lived charge separation. RSC Advances, 2015, 5, 45582-45585.	1.7	13
475	Thermodynamics and Photodynamics of a Monoprotonated Porphyrin Directly Stabilized by Hydrogen Bonding with Polar Protic Solvents. Chemistry - A European Journal, 2017, 23, 4669-4679.	1.7	13
476	A large kinetic isotope effect in the reaction of ascorbic acid with 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIOË™) in aqueous buffer solutions. Chemical Communications, 2020, 56, 11505-11507.	2.2	13
477	Controllable Threshold Voltage in Organic Complementary Logic Circuits with an Electron-Trapping Polymer and Photoactive Gate Dielectric Layer. ACS Applied Materials & Interfaces, 2016, 8, 18249-18255.	4.0	12
478	Photooxygenation of alkanes by dioxygen with p-benzoquinone derivatives with high quantum yields. Photochemical and Photobiological Sciences, 2016, 15, 731-734.	1.6	12
479	A Triphenylamine–Naphthalenediimide–Fullerene Triad: Synthesis, Photoinduced Charge Separation and Solutionâ€Processable Bulk Heterojunction Solar Cells. Asian Journal of Organic Chemistry, 2018, 7, 220-226.	1.3	12
480	Small Reorganization Energy for Ligand-Centered Electron-Transfer Reduction of Compound I to Compound II in a Heme Model Study. Inorganic Chemistry, 2019, 58, 8263-8266.	1.9	12
481	Catalytic Four-Electron Reduction of Dioxygen by Ferrocene Derivatives with a Nonheme Iron(III) TAML Complex. Inorganic Chemistry, 2020, 59, 18010-18017.	1.9	12
482	Migration Reactivities of σ-Bonded Ligands of Organoiron and Organocobalt Porphyrins Depending on Different High Oxidation States. Inorganic Chemistry, 1999, 38, 5000-5006.	1.9	11
483	Splitting of Degenerate Orbitals of Dibenzyl and Tetrabenzyl Adducts of C60:  ESR of the Radical Anions and the Rotation Barriers of Benzyl Groups. Journal of Physical Chemistry A, 2000, 104, 2908-2913.	1.1	11
484	Ï€-Complex formation in electron-transfer reactions of porphyrins. Journal of Porphyrins and Phthalocyanines, 2004, 08, 191-200.	0.4	11
485	Catalytic oxidation of formic acid by dioxygen with an organoiridium complex. Catalysis Science and Technology, 2014, 4, 3636-3639.	2.1	11
486	Activationless Electron Self-Exchange of High-Valent Oxo and Imido Complexes of Chromium Corroles. Inorganic Chemistry, 2015, 54, 9223-9228.	1.9	11

#	Article	IF	CITATIONS
487	Thermal and photoinduced electron-transfer catalysis of high-valent metal-oxo porphyrins in oxidation of substrates. Journal of Porphyrins and Phthalocyanines, 2016, 20, 35-44.	0.4	11
488	A subphthalocyanine–pyrene dyad: electron transfer and singlet oxygen generation. Photochemical and Photobiological Sciences, 2017, 16, 1512-1518.	1.6	11
489	Dihydroxylation of styrene by sodium chlorite with scandium triflate. Journal of Physical Organic Chemistry, 2017, 30, e3619.	0.9	11
490	Photocatalytic hydrogen evolution using a Ru(ii)-bound heteroaromatic ligand as a reactive site. Dalton Transactions, 2020, 49, 17230-17242.	1.6	11
491	Electron transfer chemistry of metalloporphyrins and related metal complexes. Journal of Porphyrins and Phthalocyanines, 2000, 04, 398-400.	0.4	10
492	DNA Cleavage Induced by Thermal Electron Transfer from a Dimeric NADH Analogue to Acridinium Ions in the Presence of Oxygen. Journal of the American Chemical Society, 2004, 126, 12794-12795.	6.6	10
493	Ni–Cu alloy nanoparticles loaded on various metal oxides acting as efficient catalysts for photocatalytic H ₂ evolution. RSC Advances, 2015, 5, 44912-44919.	1.7	10
494	Photocatalytic Hydrogen Evolution from Plastoquinol Analogues as a Potential Functional Model of Photosystem I. Inorganic Chemistry, 2020, 59, 14838-14846.	1.9	10
495	A Highly Reactive Chromium(V)–Oxo TAML Cation Radical Complex in Electron Transfer and Oxygen Atom Transfer Reactions. ACS Catalysis, 2021, 11, 2889-2901.	5.5	10
496	Cobalt(III) Porphyrin-catalysed Hydride Reduction of 10-Methylacridinium ion and Hydrometallation of Alkenes and Alkynes by Tributyltin Hydride. Journal of Porphyrins and Phthalocyanines, 1997, 01, 251-258.	0.4	9
497	Quantitative Evaluation of Lewis Acidity of Zinc Ion with Tetradentate Tripodal Ligands in Formation of the Superoxide Complexes. Chemistry Letters, 2001, 30, 920-921.	0.7	9
498	Excitation energy transfer from non-aggregated molecules to perylenediimide nanoribbons via ionic interactions in water. Journal of Materials Chemistry, 2012, 22, 12547.	6.7	9
499	Photoinduced Processes of Supramolecular Nanoarrays Composed of Porphyrin and Benzo[<i>ghi</i>]perylenetriimide Units through Triple Hydrogen Bonds with Oneâ€Dimensional Columnar Phases. Chemistry - an Asian Journal, 2016, 11, 613-624.	1.7	9
500	A Bispidine Iron(IV)–Oxo Complex in the Entatic State. Angewandte Chemie, 2016, 128, 11295-11299.	1.6	9
501	Nanofabrication of a Solidâ€State, Mesoporous Nanoparticle Composite for Efficient Photocatalytic Hydrogen Generation. ChemPlusChem, 2016, 81, 521-525.	1.3	9
502	Fine Control of the Redox Reactivity of a Nonheme Iron(III)–Peroxo Complex by Binding Redoxâ€Inactive Metal Ions. Angewandte Chemie, 2017, 129, 819-823.	1.6	9
503	Base Control of Electron-Transfer Reactions of Manganese(III) Porphyrins. European Journal of Inorganic Chemistry, 2000, 2000, 1557-1562.	1.0	8
504	Catalytic effect of monovalent cations on the amine oxidation by cofactor TTQ of quinoprotein amine dehydrogenases. Chemical Communications, 2000, , 329-330.	2.2	8

#	Article	IF	CITATIONS
505	Catalysis of Photoinduced Electron Transfer Reactions. Advances in Photochemistry, 2007, , 107-172.	0.4	8
506	Combination of visible-light responsive heterogeneous and homogeneous photocatalysts for water oxidation. Physical Chemistry Chemical Physics, 2011, 13, 17960.	1.3	8
507	Electronic infrared light absorption of a tri-palladium complex containing two π-expanded tetracene ligands. Chemical Science, 2014, 5, 4888-4894.	3.7	8
508	An effective preparation method of composite photocatalysts for hydrogen evolution using an organic photosensitizer and metal particles assembled on alumina-silica. Catalysis Today, 2016, 278, 303-311.	2.2	8
509	Aluminium ion-promoted radical-scavenging reaction of methylated hydroquinone derivatives. Organic and Biomolecular Chemistry, 2016, 14, 7956-7961.	1.5	8
510	Lightâ€Harvesting Phthalocyanine–Diketopyrrolopyrrole Derivatives: Synthesis, Spectroscopic, Electrochemical, and Photochemical Studies. Chemistry - A European Journal, 2016, 22, 17800-17807.	1.7	8
511	Switchover of the Mechanism between Electron Transfer and Hydrogenâ€Atom Transfer for a Protonated Manganese(IV)–Oxo Complex by Changing Only the Reaction Temperature. Angewandte Chemie, 2016, 128, 7576-7580.	1.6	8
512	Inter- and Intramolecular Electron-Transfer Reduction Properties of Coronenediimide Derivatives via Photoinduced Processes. Journal of Physical Chemistry C, 2018, 122, 13333-13346.	1.5	8
513	Photoexcited state chemistry of metal–oxygen complexes. Dalton Transactions, 2018, 47, 16019-16026.	1.6	8
514	Regioselective Oxybromination of Benzene and Its Derivatives by Bromide Anion with a Mononuclear Nonheme Mn(IV)–Oxo Complex. Inorganic Chemistry, 2019, 58, 14299-14303.	1.9	8
515	Evaluation of the sonosensitizing activities of 5-aminolevulinic acid and Sn(IV) chlorin e6 in tumor-bearing chick embryos. Anticancer Research, 2014, 34, 4583-7.	0.5	8
516	Heme compound II models in chemoselectivity and disproportionation reactions. Chemical Science, 0, ,	3.7	8
517	Peroxidation of polyunsaturated fatty acids, initiated by the direct interaction between a cobalt porphyrin complex and polyunsaturated fatty acids. Journal of the Chemical Society Perkin Transactions II, 1989, , 2035.	0.9	7
518	Binding of Scandium Ions to Metalloporphyrin–Flavin Complexes for Long‣ived Charge Separation. Chemistry - A European Journal, 2014, 20, 15518-15532.	1.7	7
519	Multiple photosynthetic reaction centres of porphyrinic polypeptide–Li ⁺ @C ₆₀ supramolecular complexes. Chemical Communications, 2015, 51, 17517-17520.	2.2	7
520	Laser-induced pinpoint hydrogen evolution from benzene and water using metal free single-walled carbon nanotubes with high quantum yields. Chemical Science, 2015, 6, 666-674.	3.7	7
521	Light harvesting subphthalocyanine–ferrocene dyads: Fast electron transfer process studied by femtosecond laser photolysis. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1148-1155.	0.4	7
522	Reactivity of 2,2-Diphenyl-1-picrylhydrazyl Solubilized in Water by <i>β</i> -Cyclodextrin and Its Methylated Derivative. ChemistrySelect, 2016, 1, 3367-3370.	0.7	7

#	Article	IF	CITATIONS
523	A Highâ€Valent Manganese(IV)–Oxo–Cerium(IV) Complex and Its Enhanced Oxidizing Reactivity. Angewandte Chemie, 2019, 131, 16270-16275.	1.6	7
524	Synthesis and radical-scavenging activity of C-methylated fisetin analogues. Bioorganic and Medicinal Chemistry, 2019, 27, 1720-1727.	1.4	7
525	Single Electron Transfer Diels-Alder Reaction of Fullerene with Danishefsky's Diene. Synlett, 1999, 1999, 1130-1132.	1.0	6
526	Disproportionation of Dipyrrolylquinoxaline Radical Anions via the Internal Protons of the Pyrrole Moieties. Journal of the American Chemical Society, 2011, 133, 7284-7287.	6.6	6
527	Influence of pH on the decay of β-carotene radical cation in aqueous Triton X-100: A laser flash photolysis study. Journal of Photochemistry and Photobiology B: Biology, 2015, 146, 68-73.	1.7	6
528	Photocatalytic oxidation of iron(<scp>ii</scp>) complexes by dioxygen using 9-mesityl-10-methylacridinium ions. Chemical Communications, 2016, 52, 6178-6180.	2.2	6
529	Ionic manipulation of charge-transfer and photodynamics of [60]fullerene confined in pyrrolo-tetrathiafulvalene cage. Chemical Communications, 2017, 53, 9898-9901.	2.2	6
530	A Pyropheophorbide Analogue Containing a Fused Methoxy Cyclohexenone Ring System Shows Promising Cancerâ€Imaging Ability. ChemMedChem, 2019, 14, 1503-1513.	1.6	6
531	A Diprotonated Porphyrin as an Electron Mediator in Photoinduced Electron Transfer in Hydrogen-Bonded Supramolecular Assemblies. Journal of Physical Chemistry C, 2019, 123, 11529-11538.	1.5	6
532	Effects of reaction environments on radical-scavenging mechanisms of ascorbic acid. Journal of Clinical Biochemistry and Nutrition, 2021, 68, 116-122.	0.6	6
533	New Paradigm of Electron Transfer Chemistry in Organic Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2003, 61, 1046-1055.	0.0	5
534	Photoelectrochemical Cell Based on Cup-Shaped Nanocarbon–Fullerene Composite Nanocluster Film: Enhancement of Photocurrent Generation by Cup-Shaped Nanocarbons as an Electron Transporter. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 251-260.	1.0	5
535	The high stability of intermediate radicals enhances the radical-scavenging activity of aminochromanols. RSC Advances, 2012, 2, 12714.	1.7	5
536	Comparison of in vivo and in vitro antioxidative parameters for eleven food factors. RSC Advances, 2013, 3, 4535.	1.7	5
537	Sumanenetrione Anions Generated by Electrochemical and Chemical Reduction. Chemistry Letters, 2014, 43, 1297-1299.	0.7	5
538	Molecular assemblies based on strong axial coordination in metal complexes of saddle-distorted dodecaphenylporphyrins. Journal of Porphyrins and Phthalocyanines, 2015, 19, 32-44.	0.4	5
539	A Chromium(III)-Superoxo Complex as a Three-Electron Oxidant with a Large Tunneling Effect in Multi-Electron Oxidation of NADH Analogues. Angewandte Chemie, 2017, 129, 3564-3569.	1.6	5
540	Generation and Electronâ€Transfer Reactivity of the Longâ€Lived Photoexcited State of a Manganese(IV)â€Oxoâ€Scandium Nitrate Complex. Israel Journal of Chemistry, 2020, 60, 1049-1056.	1.0	5

#	Article	IF	CITATIONS
541	Acid Catalysis in the Oxidation of Substrates by Mononuclear Manganese(III)–Aqua Complexes. Inorganic Chemistry, 2022, 61, 6594-6603.	1.9	5
542	Bis-ortho-diynyl-arene C60 adducts on SnO2 films for photoelectrochemical cells. Journal of Materials Chemistry, 2008, 18, 3237.	6.7	4
543	Synthesis and fast electron-transfer reactions of fullerene–carbazole dendrimers with short linkages. New Journal of Chemistry, 2013, 37, 3252.	1.4	4
544	Acid-promoted hydride transfer from an NADH analogue to a Cr(<scp>iii</scp>)–superoxo complex <i>via</i> a proton-coupled hydrogen atom transfer. Dalton Transactions, 2021, 50, 675-680.	1.6	4
545	Oxidative <i>versus</i> basic asynchronous hydrogen atom transfer reactions of Mn(<scp>iii</scp>)-hydroxo and Mn(<scp>iii</scp>)-aqua complexes. Inorganic Chemistry Frontiers, 2022, 9, 3233-3243.	3.0	4
546	A metalloporphyrinic compound with a high selectivity for N2 and CO2 separation. Journal of Porphyrins and Phthalocyanines, 2015, 19, 1225-1231.	0.4	3
547	Effect of alkyl group on transnitrosation of N-nitrosothiazolidine thiocarboxamides. Bioorganic and Medicinal Chemistry, 2015, 23, 6733-6739.	1.4	3
548	Photoinduced Generation of Superoxidants for the Oxidation of Substrates with High Câ^'H Bond Dissociation Energies. ChemPhotoChem, 2020, 4, 271-281.	1.5	3
549	Selective Oxygenation by Electron Transfer. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 343-353.	0.0	3
550	Electron Donor–Acceptor Nanohybrids and Their Application to Light–Energy Conversion. World Scientific Series on Carbon Nanoscience, 2011, , 519-543.	0.1	2
551	Carotenoid radical ions: A laser flash photolysis study. Journal of Photochemistry and Photobiology B: Biology, 2020, 212, 112023.	1.7	2
552	Structure and Unprecedented Reactivity of a Mononuclear Nonheme Cobalt(III) Iodosylbenzene Complex. Angewandte Chemie, 2020, 132, 13683-13687.	1.6	2
553	ELECTRON TRANSFER IN ORGANIC REACTIONS. , 1997, 10, 129.		2
554	Review—Two Different Multiple Photosynthetic Reaction Centers Using Either Zinc Porphyrinic Oligopeptide-Fulleropyrrolidine or Free-Base Porphyrinic Polypeptide-Li+@C60 Supramolecular Complexes. ECS Journal of Solid State Science and Technology, 2020, 9, 061026.	0.9	2
555	Tunneling in the Hydrogen-Transfer Reaction from a Vitamin E Analog to an Inclusion Complex of 2,2-Diphenyl-1-picrylhydrazyl Radical with Î ² -Cyclodextrin in an Aqueous Buffer Solution at Ambient Temperature. Antioxidants, 2021, 10, 1966.	2.2	2
556	Electron Transfer ofí€-Functional Systems and Applications. , 0, , 465-510.		1
557	Frontispiece: Solar-Driven Production of Hydrogen Peroxide from Water and Dioxygen. Chemistry - A European Journal, 2018, 24, .	1.7	1
558	Aromatic hydroxylation of anthracene derivatives by a chromium(<scp>iii</scp>)-superoxo complex <i>via</i> proton-coupled electron transfer. Chemical Communications, 2019, 55, 8286-8289.	2.2	1

#	Article	IF	CITATIONS
559	Cleavage and formation of metal-carbon .SIGMA. bonds associated with redox reactions Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1988, 46, 667-680.	0.0	1
560	Organic Reactions Utilizing Electron Transfer Processes and the Catalytic Control. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1999, 57, 3-12.	0.0	1
561	Ultrafast excitation transfer and charge stabilization in a newly assembled photosynthetic antenna-reaction center mimic composed of boron dipyrrin, zinc porphyrin and fullerene. Faraday Discussions, 2011, , .	1.6	0
562	Intramolecular base atalysis in the radicalâ€scavenging reaction by vitamin E derivatives bearing a pyridine moiety. FASEB Journal, 2010, 24, lb199.	0.2	0