Jeffery D Molkentin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4099547/publications.pdf

Version: 2024-02-01

413 papers

61,393 citations

124
h-index

230

430 all docs

430 docs citations

430 times ranked

51332 citing authors

g-index

#	Article	IF	CITATIONS
1	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
2	A Calcineurin-Dependent Transcriptional Pathway for Cardiac Hypertrophy. Cell, 1998, 93, 215-228.	13.5	2,388
3	Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature, 2005, 434, 658-662.	13.7	2,005
4	Regulation of cardiac hypertrophy by intracellular signalling pathways. Nature Reviews Molecular Cell Biology, 2006, 7, 589-600.	16.1	1,680
5	Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis Genes and Development, 1997, 11, 1061-1072.	2.7	1,030
6	Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nature Cell Biology, 2007, 9, 550-555.	4.6	837
7	Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease. Nature Medicine, 2008, 14, 1097-1105.	15.2	833
8	The Zinc Finger-containing Transcription Factors GATA-4, -5, and -6. Journal of Biological Chemistry, 2000, 275, 38949-38952.	1.6	767
9	Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell, 1995, 83, 1125-1136.	13.5	765
10	c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature, 2014, 509, 337-341.	13.7	723
10	c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature, 2014, 509, 337-341. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 2007, 13, 970-974.	13.7 15.2	723 720
	Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes		
11	Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 2007, 13, 970-974. Calcineurin/NFAT Coupling Participates in Pathological, but not Physiological, Cardiac Hypertrophy.	15.2	720
11	Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 2007, 13, 970-974. Calcineurin/NFAT Coupling Participates in Pathological, but not Physiological, Cardiac Hypertrophy. Circulation Research, 2004, 94, 110-118. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nature	2.0	720 660
11 12 13	Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 2007, 13, 970-974. Calcineurin/NFAT Coupling Participates in Pathological, but not Physiological, Cardiac Hypertrophy. Circulation Research, 2004, 94, 110-118. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nature Communications, 2016, 7, 12260. Cytoplasmic Signaling Pathways That Regulate Cardiac Hypertrophy. Annual Review of Physiology,	15.2 2.0 5.8	720 660 638
11 12 13	Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 2007, 13, 970-974. Calcineurin/NFAT Coupling Participates in Pathological, but not Physiological, Cardiac Hypertrophy. Circulation Research, 2004, 94, 110-118. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nature Communications, 2016, 7, 12260. Cytoplasmic Signaling Pathways That Regulate Cardiac Hypertrophy. Annual Review of Physiology, 2001, 63, 391-426. Fibroblast-specific TGF-β–Smad2/3 signaling underlies cardiac fibrosis. Journal of Clinical Investigation,	15.2 2.0 5.8 5.6	720 660 638 616
11 12 13 14	Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 2007, 13, 970-974. Calcineurin/NFAT Coupling Participates in Pathological, but not Physiological, Cardiac Hypertrophy. Circulation Research, 2004, 94, 110-118. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nature Communications, 2016, 7, 12260. Cytoplasmic Signaling Pathways That Regulate Cardiac Hypertrophy. Annual Review of Physiology, 2001, 63, 391-426. Fibroblast-specific TGF-β–Smad2/3 signaling underlies cardiac fibrosis. Journal of Clinical Investigation, 2017, 127, 3770-3783. Temporally Regulated and Tissue-Specific Gene Manipulations in the Adult and Embryonic Heart Using a	15.2 2.0 5.8 5.6	720 660 638 616

#	Article	IF	CITATIONS
19	Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. Journal of Cellular Biochemistry, 2007, 101, 695-711.	1.2	530
20	Molecular Pathways Underlying Cardiac Remodeling During Pathophysiological Stimulation. Circulation, 2010, 122, 2727-2735.	1.6	478
21	Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. Journal of Clinical Investigation, 2018, 128, 2127-2143.	3.9	442
22	Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nature Medicine, 2012, 18, 1575-1579.	15.2	441
23	Molecular basis of physiological heart growth: fundamental concepts and new players. Nature Reviews Molecular Cell Biology, 2013, 14, 38-48.	16.1	439
24	Defining the regulatory networks for muscle development. Current Opinion in Genetics and Development, 1996, 6, 445-453.	1.5	429
25	Genetic Manipulation of Periostin Expression Reveals a Role in Cardiac Hypertrophy and Ventricular Remodeling. Circulation Research, 2007, 101, 313-321.	2.0	428
26	Prevention of Cardiac Hypertrophy in Mice by Calcineurin Inhibition., 1998, 281, 1690-1693.		421
27	GDF15/MIC-1 Functions As a Protective and Antihypertrophic Factor Released From the Myocardium in Association With SMAD Protein Activation. Circulation Research, 2006, 98, 342-350.	2.0	418
28	Cardiomyocyte Regeneration. Circulation, 2017, 136, 680-686.	1.6	417
29	Calcineurin?NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovascular Research, 2004, 63, 467-475.	1.8	403
30	Differential Activation of Signal Transduction Pathways in Human Hearts With Hypertrophy Versus Advanced Heart Failure. Circulation, 2001, 103, 670-677.	1.6	395
31	Redefining the identity of cardiac fibroblasts. Nature Reviews Cardiology, 2017, 14, 484-491.	6.1	392
32	An acute immune response underlies the benefit of cardiac stemÂcell therapy. Nature, 2020, 577, 405-409.	13.7	392
33	Calcium–calcineurin signaling in the regulation of cardiac hypertrophy. Biochemical and Biophysical Research Communications, 2004, 322, 1178-1191.	1.0	391
34	Cardiac-Specific Deletion of Gata4 Reveals Its Requirement for Hypertrophy, Compensation, and Myocyte Viability. Circulation Research, 2006, 98, 837-845.	2.0	384
35	Signaling effectors underlying pathologic growth and remodeling of the heart. Journal of Clinical Investigation, 2013, 123, 37-45.	3.9	380
36	Animal Models of Heart Failure. Circulation Research, 2012, 111, 131-150.	2.0	378

#	Article	IF	Citations
37	FoxO Transcription Factors Promote Autophagy in Cardiomyocytes. Journal of Biological Chemistry, 2009, 284, 28319-28331.	1.6	365
38	Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. Journal of Clinical Investigation, 2007, 117, 2431-2444.	3.9	359
39	Involvement of Extracellular Signal-Regulated Kinases 1/2 in Cardiac Hypertrophy and Cell Death. Circulation Research, 2002, 91, 776-781.	2.0	354
40	Physiological and Pathological Roles of the Mitochondrial Permeability Transition Pore in the Heart. Cell Metabolism, 2015, 21, 206-214.	7.2	336
41	Cyclophilin D controls mitochondrial pore–dependent Ca2+ exchange, metabolic flexibility, and propensity for heart failure in mice. Journal of Clinical Investigation, 2010, 120, 3680-3687.	3.9	333
42	Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy. Nature Medicine, 2008, 14, 442-447.	15.2	324
43	A Redox-Dependent Pathway for Regulating Class II HDACs and Cardiac Hypertrophy. Cell, 2008, 133, 978-993.	13.5	316
44	The Transcription Factors GATA4 and GATA6 Regulate Cardiomyocyte Hypertrophy in Vitro and in Vivo. Journal of Biological Chemistry, 2001, 276, 30245-30253.	1.6	310
45	STRESS signaling pathways that modulate cardiac myocyte apoptosis. Journal of Molecular and Cellular Cardiology, 2005, 38, 47-62.	0.9	304
46	Induced Deletion of the N-Cadherin Gene in the Heart Leads to Dissolution of the Intercalated Disc Structure. Circulation Research, 2005, 96, 346-354.	2.0	295
47	A TRPC6-Dependent Pathway for Myofibroblast Transdifferentiation and Wound Healing InÂVivo. Developmental Cell, 2012, 23, 705-715.	3.1	294
48	The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability. Nature, 2017, 545, 93-97.	13.7	294
49	The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart. Cell Reports, 2015, 12, 15-22.	2.9	284
50	FoxO Transcription Factors Promote Cardiomyocyte Survival upon Induction of Oxidative Stress. Journal of Biological Chemistry, 2011, 286, 7468-7478.	1.6	283
51	Conditional <i>Dicer</i> Gene Deletion in the Postnatal Myocardium Provokes Spontaneous Cardiac Remodeling. Circulation, 2008, 118, 1567-1576.	1.6	282
52	Periostin Is Required for Maturation and Extracellular Matrix Stabilization of Noncardiomyocyte Lineages of the Heart. Circulation Research, 2008, 102, 752-760.	2.0	281
53	Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes and Development, 2001, 15, 839-844.	2.7	274
54	Myofibroblasts: Trust your heart and let fate decide. Journal of Molecular and Cellular Cardiology, 2014, 70, 9-18.	0.9	273

#	Article	IF	CITATIONS
55	A Calcineurin-NFATc3-Dependent Pathway Regulates Skeletal Muscle Differentiation and Slow Myosin Heavy-Chain Expression. Molecular and Cellular Biology, 2000, 20, 6600-6611.	1.1	271
56	Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling. Journal of Clinical Investigation, 2003, 111, 1475-1486.	3.9	265
57	The Permeability Transition Pore Controls Cardiac Mitochondrial Maturation and Myocyte Differentiation. Developmental Cell, 2011, 21, 469-478.	3.1	257
58	TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7000-7005.	3.3	256
59	Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11363-11368.	3.3	254
60	Calcineurinâ€dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB Journal, 2006, 20, 1660-1670.	0.2	250
61	Regulation of angiogenesis by a non-canonical Wnt–Flt1 pathway in myeloid cells. Nature, 2011, 474, 511-515.	13.7	244
62	Targeted Disruption of NFATc3, but Not NFATc4, Reveals an Intrinsic Defect in Calcineurin-Mediated Cardiac Hypertrophic Growth. Molecular and Cellular Biology, 2002, 22, 7603-7613.	1.1	241
63	Impaired cardiac hypertrophic response in Calcineurin AÂ-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4586-4591.	3.3	236
64	The Transcription Factor GATA4 Is Activated by Extracellular Signal-Regulated Kinase 1- and 2-Mediated Phosphorylation of Serine 105 in Cardiomyocytes. Molecular and Cellular Biology, 2001, 21, 7460-7469.	1.1	234
65	Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. ELife, 2013, 2, e00772.	2.8	229
66	Fibroblast-Specific Genetic Manipulation of p38 Mitogen-Activated Protein Kinase In Vivo Reveals Its Central Regulatory Role in Fibrosis. Circulation, 2017, 136, 549-561.	1.6	225
67	An emerging consensus on cardiac regeneration. Nature Medicine, 2014, 20, 1386-1393.	15.2	222
68	Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14074-14079.	3.3	219
69	TRPC Channels As Effectors of Cardiac Hypertrophy. Circulation Research, 2011, 108, 265-272.	2.0	218
70	Calcineurin and Beyond. Circulation Research, 2000, 87, 731-738.	2.0	217
71	Extracellular Signal-Regulated Kinases 1 and 2 Regulate the Balance Between Eccentric and Concentric Cardiac Growth. Circulation Research, 2011, 108, 176-183.	2.0	217
72	Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart. Journal of Clinical Investigation, 2007, 117, 3198-3210.	3.9	212

#	Article	IF	CITATIONS
73	Physiologic Functions of Cyclophilin D and the Mitochondrial Permeability Transition Pore. Circulation Journal, 2013, 77, 1111-1122.	0.7	211
74	Redefining the roles of p38 and JNK signaling in cardiac hypertrophy: dichotomy between cultured myocytes and animal models. Journal of Molecular and Cellular Cardiology, 2003, 35, 1385-1394.	0.9	210
75	A Series of Mutations in the D-MEF2 Transcription Factor Reveal Multiple Functions in Larval and Adult Myogenesis in Drosophila. Developmental Biology, 1995, 171, 169-181.	0.9	207
76	Genetic Deletion of Myostatin From the Heart Prevents Skeletal Muscle Atrophy in Heart Failure. Circulation, 2010, 121, 419-425.	1.6	207
77	Tissue-specific GATA factors are transcriptional effectors of the small GTPase RhoA. Genes and Development, 2001, 15, 2702-2719.	2.7	206
78	Calcineurin Promotes Protein Kinase C and c-Jun NH2-terminal Kinase Activation in the Heart. Journal of Biological Chemistry, 2000, 275, 13571-13579.	1.6	205
79	Calcineurin-Mediated Hypertrophy Protects Cardiomyocytes From Apoptosis In Vitro and In Vivo. Circulation Research, 2000, 86, 255-263.	2.0	203
80	MEK1-ERK2 Signaling Pathway Protects Myocardium From Ischemic Injury In Vivo. Circulation, 2004, 109, 1938-1941.	1.6	203
81	Targeted Inhibition of p38 Mitogen-activated Protein Kinase Antagonizes Cardiac Injury and Cell Death Following Ischemia-Reperfusion in Vivo. Journal of Biological Chemistry, 2004, 279, 15524-15530.	1.6	202
82	Cardiac-Specific Loss of N-Cadherin Leads to Alteration in Connexins With Conduction Slowing and Arrhythmogenesis. Circulation Research, 2005, 97, 474-481.	2.0	201
83	A Tension-Based Model Distinguishes Hypertrophic versus Dilated Cardiomyopathy. Cell, 2016, 165, 1147-1159.	13.5	193
84	Mechanisms of necroptosis in T cells. Journal of Experimental Medicine, 2011, 208, 633-641.	4.2	190
85	Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis. Blood, 2008, 111, 1257-1265.	0.6	189
86	PKCα regulates the hypertrophic growth of cardiomyocytes through extracellular signal–regulated kinase1/2 (ERK1/2). Journal of Cell Biology, 2002, 156, 905-919.	2.3	185
87	Inhibiting Fibronectin Attenuates Fibrosis and Improves Cardiac Function in a Model of Heart Failure. Circulation, 2018, 138, 1236-1252.	1.6	185
88	Calcium influx is sufficient to induce muscular dystrophy through a TRPC-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19023-19028.	3.3	184
89	Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling. Journal of Clinical Investigation, 2003, 111, 1475-1486.	3.9	184
90	A Thrombospondin-Dependent Pathway forÂa Protective ER Stress Response. Cell, 2012, 149, 1257-1268.	13.5	178

#	Article	IF	CITATIONS
91	A threshold of GATA4 and GATA6 expression is required for cardiovascular development. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11189-11194.	3.3	170
92	Inhibition of mitochondrial permeability transition by deletion of the ANT family and CypD. Science Advances, 2019, 5, eaaw4597.	4.7	169
93	Defective T cell development and function in calcineurin AÂ-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9398-9403.	3.3	168
94	The Transcription Factors GATA4 and dHAND Physically Interact to Synergistically Activate Cardiac Gene Expression through a p300-dependent Mechanism. Journal of Biological Chemistry, 2002, 277, 24390-24398.	1.6	163
95	Genetic Loss of Calcineurin Blocks Mechanical Overload-induced Skeletal Muscle Fiber Type Switching but Not Hypertrophy. Journal of Biological Chemistry, 2004, 279, 26192-26200.	1.6	160
96	Myocyte Enhancer Factors 2A and 2C Induce Dilated Cardiomyopathy in Transgenic Mice*. Journal of Biological Chemistry, 2006, 281, 9152-9162.	1.6	160
97	The mitochondrial permeability transition pore in motor neurons: Involvement in the pathobiology of ALS mice. Experimental Neurology, 2009, 218, 333-346.	2.0	159
98	Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut, 2016, 65, 1333-1346.	6.1	159
99	c-Jun N-terminal kinases (JNK) antagonize cardiac growth through cross-talk with calcineurin-NFAT signaling. EMBO Journal, 2003, 22, 5079-5089.	3.5	157
100	Renaming the DSCR1 / Adapt78 gene family as RCAN : regulators of calcineurin. FASEB Journal, 2007, 21, 3023-3028.	0.2	157
101	Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle. Journal of Clinical Investigation, 2011, 121, 1044-1052.	3.9	157
102	Re-employment of developmental transcription factors in adult heart disease. Seminars in Cell and Developmental Biology, 2007, 18, 117-131.	2.3	156
103	The IP ₃ Receptor Regulates Cardiac Hypertrophy in Response to Select Stimuli. Circulation Research, 2010, 107, 659-666.	2.0	154
104	Temporally Controlled Onset of Dilated Cardiomyopathy Through Disruption of the SRF Gene in Adult Heart. Circulation, 2005, 112, 2930-2939.	1.6	151
105	Interaction Between NFήB and NFAT Coordinates Cardiac Hypertrophy and Pathological Remodeling. Circulation Research, 2012, 110, 1077-1086.	2.0	151
106	The Dual-Specificity Phosphatase MKP-1 Limits the Cardiac Hypertrophic Response In Vitro and In Vivo. Circulation Research, 2001, 88, 88-96.	2.0	149
107	Altered Skeletal Muscle Phenotypes in Calcineurin Al $$ and Al $$ Gene-Targeted Mice. Molecular and Cellular Biology, 2003, 23, 4331-4343.	1.1	149
108	Preexisting endothelial cells mediate cardiac neovascularization after injury. Journal of Clinical Investigation, 2017, 127, 2968-2981.	3.9	146

#	Article	IF	CITATIONS
109	Decreased cardiac L-type Ca2+ channel activity induces hypertrophy and heart failure in mice. Journal of Clinical Investigation, 2012, 122, 280-290.	3.9	145
110	DUSP6 (MKP3) Null Mice Show Enhanced ERK1/2 Phosphorylation at Baseline and Increased Myocyte Proliferation in the Heart Affecting Disease Susceptibility. Journal of Biological Chemistry, 2008, 283, 31246-31255.	1.6	144
111	Calcineurin Expression, Activation, and Function in Cardiac Pressure-Overload Hypertrophy. Circulation, 2000, 101, 2431-2437.	1.6	143
112	Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1655-1660.	3. 3	143
113	Multiple Roles for the MyoD Basic Region in Transmission of Transcriptional Activation Signals and Interaction with MEF2. Molecular and Cellular Biology, 1998, 18, 69-77.	1.1	142
114	Calcineurin and cardiac hypertrophy: Where have we been? Where are we going?. Journal of Physiology, 2002, 541, 1-8.	1.3	141
115	Shigella Induces Mitochondrial Dysfunction and Cell Death in Nonmyleoid Cells. Cell Host and Microbe, 2009, 5, 123-136.	5.1	140
116	Pharmacological- and Gene Therapy-Based Inhibition of Protein Kinase $\widehat{\text{Cl}}_{\pm}\widehat{\text{l}}^2$ Enhances Cardiac Contractility and Attenuates Heart Failure. Circulation, 2006, 114, 574-582.	1.6	139
117	Direct and Indirect Interactions between Calcineurin-NFAT and MEK1-Extracellular Signal-Regulated Kinase 1/2 Signaling Pathways Regulate Cardiac Gene Expression and Cellular Growth. Molecular and Cellular Biology, 2005, 25, 865-878.	1.1	138
118	Identification of a Cooperative Mechanism Involving Interleukin-13 and Eotaxin-2 in Experimental Allergic Lung Inflammation. Journal of Biological Chemistry, 2005, 280, 13952-13961.	1.6	137
119	Extracellular Signal-Regulated Kinase 2 Interacts with and Is Negatively Regulated by the LIM-Only Protein FHL2 in Cardiomyocytes. Molecular and Cellular Biology, 2004, 24, 1081-1095.	1.1	136
120	PKCl $^\pm$ regulates platelet granule secretion and thrombus formation in mice. Journal of Clinical Investigation, 2009, 119, 399-407.	3.9	136
121	Increased Coupled Gating of L-Type Ca ²⁺ Channels During Hypertension and Timothy Syndrome. Circulation Research, 2010, 106, 748-756.	2.0	134
122	NFATc3 and NFATc4 Are Required for Cardiac Development and Mitochondrial Function. Circulation Research, 2003, 92, 1305-1313.	2.0	129
123	Unrestrained erythroblast development in Nix-/- mice reveals a mechanism for apoptotic modulation of erythropoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6794-6799.	3.3	129
124	CaMKII Negatively Regulates Calcineurin–NFAT Signaling in Cardiac Myocytes. Circulation Research, 2009, 105, 316-325.	2.0	129
125	Moderate heart dysfunction in mice with inducible cardiomyocyte-specific excision of the Serca2 gene. Journal of Molecular and Cellular Cardiology, 2009, 47, 180-187.	0.9	128
126	Protein Kinase \hat{Cl}_{+} , but Not PK \hat{Cl}_{-}^2 or PK \hat{Cl}_{-}^3 , Regulates Contractility and Heart Failure Susceptibility. Circulation Research, 2009, 105, 194-200.	2.0	127

#	Article	IF	Citations
127	Interaction between TAK1–TAB1–TAB2 and RCAN1–calcineurin defines a signalling nodal control point. Nature Cell Biology, 2009, 11, 154-161.	4.6	127
128	Estrogen Attenuates Left Ventricular and Cardiomyocyte Hypertrophy by an Estrogen Receptor–Dependent Pathway That Increases Calcineurin Degradation. Circulation Research, 2009, 104, 265-275.	2.0	125
129	Periostin as a Heterofunctional Regulator of Cardiac Development and Disease. Current Genomics, 2008, 9, 548-555.	0.7	124
130	The \hat{l}^2 -Catenin/T-Cell Factor/Lymphocyte Enhancer Factor Signaling Pathway Is Required for Normal and Stress-Induced Cardiac Hypertrophy. Molecular and Cellular Biology, 2006, 26, 4462-4473.	1.1	123
131	Cardiomyocytes fuse with surrounding noncardiomyocytes and reenter the cell cycle. Journal of Cell Biology, 2004, 167, 351-363.	2.3	122
132	Activated Notch Inhibits Myogenic Activity of the MADS-Box Transcription Factor Myocyte Enhancer Factor 2C. Molecular and Cellular Biology, 1999, 19, 2853-2862.	1.1	121
133	Modulatory calcineurin-interacting proteins 1 and 2 function as calcineurin facilitators in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7327-7332.	3.3	118
134	Deletion of periostin reduces muscular dystrophy and fibrosis in mice by modulating the transforming growth factor- \hat{l}^2 pathway. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10978-10983.	3.3	117
135	Regulated Necrotic Cell Death. Circulation Research, 2015, 116, 1800-1809.	2.0	116
136	Glycogen Synthase Kinase- $3\hat{l}^2$ Regulates Growth, Calcium Homeostasis, and Diastolic Function in the Heart. Journal of Biological Chemistry, 2004, 279, 21383-21393.	1.6	115
137	Endoplasmic reticulum–mitochondria crosstalk in NIX-mediated murine cell death. Journal of Clinical Investigation, 2009, 119, 203-12.	3.9	115
138	Prevention of Cardiac Hypertrophy by Calcineurin Inhibition. Circulation Research, 1999, 84, 623-632.	2.0	114
139	Requirement of Nuclear Factor of Activated T-cells in Calcineurin-mediated Cardiomyocyte Hypertrophy. Journal of Biological Chemistry, 2002, 277, 48617-48626.	1.6	114
140	Activation of NFATc3 Down-regulates the \hat{I}^21 Subunit of Large Conductance, Calcium-activated K+Channels in Arterial Smooth Muscle and Contributes to Hypertension. Journal of Biological Chemistry, 2007, 282, 3231-3240.	1.6	113
141	A Critical Function for Ser-282 in Cardiac Myosin Binding Protein-C Phosphorylation and Cardiac Function. Circulation Research, 2011, 109, 141-150.	2.0	113
142	Identifying the components of the elusive mitochondrial permeability transition pore. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10396-10397.	3.3	113
143	Calcineurin and human heart failure. Nature Medicine, 1999, 5, 246-247.	15.2	112
144	Abnormalities of the Genitourinary Tract in Female Mice Lacking GATA5. Molecular and Cellular Biology, 2000, 20, 5256-5260.	1.1	112

#	Article	IF	CITATIONS
145	Manipulating Cardiac Contractility in Heart Failure. Circulation, 2004, 109, 150-158.	1.6	112
146	A Caveolae-Targeted L-Type Ca ²⁺ Channel Antagonist Inhibits Hypertrophic Signaling Without Reducing Cardiac Contractility. Circulation Research, 2012, 110, 669-674.	2.0	112
147	Divergent transcriptional responses to independent genetic causes of cardiac hypertrophy. Physiological Genomics, 2001, 6, 19-28.	1.0	111
148	Direct Activation of a GATA6 Cardiac Enhancer by Nkx2.5: Evidence for a Reinforcing Regulatory Network of Nkx2.5 and GATA Transcription Factors in the Developing Heart. Developmental Biology, 2000, 217, 301-309.	0.9	110
149	Blockade of Hsp20 Phosphorylation Exacerbates Cardiac Ischemia/Reperfusion Injury by Suppressed Autophagy and Increased Cell Death. Circulation Research, 2009, 105, 1223-1231.	2.0	110
150	Extracellular signalâ€regulated kinase 1/2 (ERK1/2) signaling in cardiac hypertrophy. Annals of the New York Academy of Sciences, 2010, 1188, 96-102.	1.8	109
151	Mechanisms Underlying Heterogeneous Ca2+ Sparklet Activity in Arterial Smooth Muscle. Journal of General Physiology, 2006, 127, 611-622.	0.9	108
152	Erk Negative Feedback Control Enables Pre-B Cell Transformation and Represents a Therapeutic Target in Acute Lymphoblastic Leukemia. Cancer Cell, 2015, 28, 114-128.	7.7	107
153	Genetic Inhibition or Activation of JNK1/2 Protects the Myocardium from Ischemia-Reperfusion-induced Cell Death in Vivo. Journal of Biological Chemistry, 2005, 280, 32602-32608.	1.6	105
154	Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. Journal of Molecular and Cellular Cardiology, 2013, 65, 108-119.	0.9	105
155	Cross-regulation of Novel Protein Kinase C (PKC) Isoform Function in Cardiomyocytes. Journal of Biological Chemistry, 2003, 278, 14555-14564.	1.6	103
156	MEKK1 Transduces Activin Signals in Keratinocytes To Induce Actin Stress Fiber Formation and Migration. Molecular and Cellular Biology, 2005, 25, 60-65.	1.1	103
157	Genetic Manipulation of Periostin Expression in the Heart Does Not Affect Myocyte Content, Cell Cycle Activity, or Cardiac Repair. Circulation Research, 2009, 104, e1-7.	2.0	103
158	Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition. Journal of Molecular and Cellular Cardiology, 2014, 72, 316-325.	0.9	103
159	Regulation of MEF2 by p38 MAPK and Its Implication in Cardiomyocyte Biology. Trends in Cardiovascular Medicine, 2000, 10, 19-22.	2.3	101
160	Transient Receptor Potential Channels Contribute to Pathological Structural and Functional Remodeling After Myocardial Infarction. Circulation Research, 2014, 115, 567-580.	2.0	101
161	The Dnal-Related Factor Mrj Interacts with Nuclear Factor of Activated T Cells c3 and Mediates Transcriptional Repression through Class II Histone Deacetylase Recruitment. Molecular and Cellular Biology, 2005, 25, 9936-9948.	1.1	100
162	Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 2011, 50, 460-470.	0.9	100

#	Article	IF	CITATIONS
163	Mediating ERK1/2 signaling rescues congenital heart defects in a mouse model of Noonan syndrome. Journal of Clinical Investigation, 2007, 117, 2123-2132.	3.9	100
164	Phosphorylation of the MADS-Box Transcription Factor MEF2C Enhances Its DNA Binding Activity. Journal of Biological Chemistry, 1996, 271, 17199-17204.	1.6	99
165	Proteasome functional insufficiency activates the calcineurin–NFAT pathway in cardiomyocytes and promotes maladaptive remodelling of stressed mouse hearts. Cardiovascular Research, 2010, 88, 424-433.	1.8	99
166	Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1973-H1982.	1.5	97
167	STIM1 elevation in the heart results in aberrant Ca2+ handling and cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2015, 87, 38-47.	0.9	97
168	Calcineurin and hypertrophic heart disease: novel insights and remaining questions. Cardiovascular Research, 2002, 53, 806-821.	1.8	96
169	With great power comes great responsibility: Using mouse genetics to study cardiac hypertrophy and failure. Journal of Molecular and Cellular Cardiology, 2009, 46, 130-136.	0.9	96
170	Functional Divergence of Platelet Protein Kinase C (PKC) Isoforms in Thrombus Formation on Collagen. Journal of Biological Chemistry, 2010, 285, 23410-23419.	1.6	96
171	Transforming Growth Factor β–Activated Kinase 1 Signaling Pathway Critically Regulates Myocardial Survival and Remodeling. Circulation, 2014, 130, 2162-2172.	1.6	96
172	Age-Dependent Effect of Myostatin Blockade on Disease Severity in a Murine Model of Limb-Girdle Muscular Dystrophy. American Journal of Pathology, 2006, 168, 1975-1985.	1.9	94
173	The control of Ca ²⁺ influx and NFATc3 signaling in arterial smooth muscle during hypertension. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15623-15628.	3.3	94
174	The Role of Calcium/Calmodulin-Activated Calcineurin in Rapid and Slow Endocytosis at Central Synapses. Journal of Neuroscience, 2010, 30, 11838-11847.	1.7	94
175	Lost in Transgenesis. Circulation Research, 2012, 111, 761-777.	2.0	92
176	Dichotomy of Ca2+ in the heart: contraction versus intracellular signaling. Journal of Clinical Investigation, 2006, 116, 623-626.	3.9	92
177	Ca2+-dependent Dephosphorylation of Kinesin Heavy Chain on \hat{l}^2 -Granules in Pancreatic \hat{l}^2 -Cells. Journal of Biological Chemistry, 2002, 277, 24232-24242.	1.6	91
178	CIB1 is a regulator of pathological cardiac hypertrophy. Nature Medicine, 2010, 16, 872-879.	15.2	91
179	Regulation of cardiac hypertrophy and remodeling through the dual-specificity MAPK phosphatases (DUSPs). Journal of Molecular and Cellular Cardiology, 2016, 101, 44-49.	0.9	91
180	Calcineurin and NFAT4 Induce Chondrogenesis. Journal of Biological Chemistry, 2002, 277, 42214-42218.	1.6	89

#	Article	IF	CITATIONS
181	Serine 105 phosphorylation of transcription factor GATA4 is necessary for stress-induced cardiac hypertrophy in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12331-12336.	3.3	89
182	Inducible Cardiac-Restricted Expression of Enteroviral Protease 2A Is Sufficient to Induce Dilated Cardiomyopathy. Circulation, 2007, 115, 94-102.	1.6	88
183	The Transcription Factor GATA-6 Regulates Pathological Cardiac Hypertrophy. Circulation Research, 2010, 107, 1032-1040.	2.0	88
184	Individual Cardiac Mitochondria Undergo Rare Transient Permeability Transition Pore Openings. Circulation Research, 2016, 118, 834-841.	2.0	88
185	A murine model of inducible, cardiac-specific deletion of STAT3: Its use to determine the role of STAT3 in the upregulation of cardioprotective proteins by ischemic preconditioning. Journal of Molecular and Cellular Cardiology, 2011, 50, 589-597.	0.9	87
186	Direct Interaction and Reciprocal Regulation between ASK1 and Calcineurin-NFAT Control Cardiomyocyte Death and Growth. Molecular and Cellular Biology, 2006, 26, 3785-3797.	1.1	86
187	Bnip3 mediates permeabilization of mitochondria and release of cytochrome c via a novel mechanism. Journal of Molecular and Cellular Cardiology, 2010, 48, 1146-1156.	0.9	86
188	High Glucose Activates Nuclear Factor of Activated T Cells in Native Vascular Smooth Muscle. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 794-800.	1.1	85
189	Calcium sparklets regulate local and global calcium in murine arterial smooth muscle. Journal of Physiology, 2007, 579, 187-201.	1.3	85
190	Does Contractile Ca ²⁺ Control Calcineurin-NFAT Signaling and Pathological Hypertrophy in Cardiac Myocytes?. Science Signaling, 2008, 1, pe31.	1.6	85
191	Placental Growth Factor Regulates Cardiac Adaptation and Hypertrophy Through a Paracrine Mechanism. Circulation Research, 2011, 109, 272-280.	2.0	84
192	RhoA protects the mouse heart against ischemia/reperfusion injury. Journal of Clinical Investigation, 2011, 121, 3269-3276.	3.9	83
193	Modulation of chromatin position and gene expression by HDAC4 interaction with nucleoporins. Journal of Cell Biology, 2011, 193, 21-29.	2.3	83
194	Genetic Lineage Tracing of Sca-1 ⁺ Cells Reveals Endothelial but Not Myogenic Contribution to the Murine Heart. Circulation, 2018, 138, 2931-2939.	1.6	83
195	$\hat{l}\pm 1$ G-dependent T-type Ca2+ current antagonizes cardiac hypertrophy through a NOS3-dependent mechanism in mice. Journal of Clinical Investigation, 2009, 119, 3787-3796.	3.9	83
196	Novel blocker of NFAT activation inhibits IL-6 production in human myometrial arteries and reduces vascular smooth muscle cell proliferation. American Journal of Physiology - Cell Physiology, 2007, 292, C1167-C1178.	2.1	82
197	Lack of periostin leads to suppression of Notch1 signaling and calcific aortic valve disease. Physiological Genomics, 2009, 39, 160-168.	1.0	82
198	Hyperglycemia Acutely Increases Cytosolic Reactive Oxygen Species via <i>O</i> -linked GlcNAcylation and CaMKII Activation in Mouse Ventricular Myocytes. Circulation Research, 2020, 126, e80-e96.	2.0	82

#	Article	IF	Citations
199	Calcineurin transgenic mice have mitochondrial dysfunction and elevated superoxide production. American Journal of Physiology - Cell Physiology, 2003, 284, C562-C570.	2.1	81
200	Cardiac Myosin Binding Protein-C Phosphorylation in a \hat{I}^2 -Myosin Heavy Chain Background. Circulation, 2009, 119, 1253-1262.	1.6	81
201	Ca2+ influx through L-type Ca2+ channels and transient receptor potential channels activates pathological hypertrophy signaling. Journal of Molecular and Cellular Cardiology, 2012, 53, 657-667.	0.9	81
202	Cardiomyocyte-Specific Transforming Growth Factor \hat{I}^2 Suppression Blocks Neutrophil Infiltration, Augments Multiple Cytoprotective Cascades, and Reduces Early Mortality After Myocardial Infarction. Circulation Research, 2014, 114, 1246-1257.	2.0	81
203	Elevated Ca ²⁺ sparklet activity during acute hyperglycemia and diabetes in cerebral arterial smooth muscle cells. American Journal of Physiology - Cell Physiology, 2010, 298, C211-C220.	2.1	80
204	Mutual antagonism between IP3RII and miRNA-133a regulates calcium signals and cardiac hypertrophy. Journal of Cell Biology, 2012, 199, 783-798.	2.3	80
205	Necroptosis Interfaces with MOMP and the MPTP in Mediating Cell Death. PLoS ONE, 2015, 10, e0130520.	1.1	80
206	Calcineurin Enhances MAPK Phosphatase-1 Expression and p38 MAPK Inactivation in Cardiac Myocytes. Journal of Biological Chemistry, 2001, 276, 15913-15919.	1.6	79
207	Deletion of cytosolic phospholipase A2 promotes striated muscle growth. Nature Medicine, 2003, 9, 944-951.	15.2	79
208	TGFβâ€mediated BIM expression and apoptosis are regulated through SMAD3â€dependent expression of the MAPK phosphatase MKP2. EMBO Reports, 2008, 9, 990-997.	2.0	79
209	Unrestrained p38 MAPK Activation in <i>Dusp1/4</i> Double-Null Mice Induces Cardiomyopathy. Circulation Research, 2013, 112, 48-56.	2.0	78
210	Calcineurin A \hat{l}^2 Gene Targeting Predisposes the Myocardium to Acute Ischemia-Induced Apoptosis and Dysfunction. Circulation Research, 2004, 94, 91-99.	2.0	77
211	Temporal activation of câ€Jun Nâ€terminal kinase in adult transgenic heart via creâ€loxPâ€mediated DNA recombination. FASEB Journal, 2003, 17, 749-751.	0.2	76
212	Reduction ofltoCauses Hypertrophy in Neonatal Rat Ventricular Myocytes. Circulation Research, 2002, 90, 578-585.	2.0	75
213	Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species. Journal of Cell Biology, 2011, 193, 1181-1196.	2.3	74
214	Role of ERK1/2 signaling in congenital valve malformations in Noonan syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18930-18935.	3.3	73
215	Bile Acids Induce Pancreatic Acinar Cell Injury and Pancreatitis by Activating Calcineurin. Journal of Biological Chemistry, 2013, 288, 570-580.	1.6	7 3
216	The Elusive Progenitor Cell in Cardiac Regeneration. Circulation Research, 2017, 120, 400-406.	2.0	73

#	Article	IF	CITATIONS
217	ASK1 Regulates Cardiomyocyte Death but Not Hypertrophy in Transgenic Mice. Circulation Research, 2009, 105, 1110-1117.	2.0	72
218	Protein kinase $\hat{\text{Cl}}$ as a heart failure therapeutic target. Journal of Molecular and Cellular Cardiology, 2011, 51, 474-478.	0.9	72
219	MBNL1-mediated regulation of differentiation RNAs promotes myofibroblast transformation and the fibrotic response. Nature Communications, 2015, 6, 10084.	5.8	72
220	DSCR1 gene expression is dependent on NFATc1 during cardiac valve formation and colocalizes with anomalous organ development in trisomy 16 mice. Developmental Biology, 2004, 266, 346-360.	0.9	71
221	Calreticulin signals upstream of calcineurin and MEF2C in a critical Ca2+-dependent signaling cascade. Journal of Cell Biology, 2005, 170, 37-47.	2.3	71
222	RhoA signaling in cardiomyocytes protects against stress-induced heart failure but facilitates cardiac fibrosis. Science Signaling, 2014, 7, ra100.	1.6	71
223	Calcineurin Links Mitochondrial Elongation with Energy Metabolism. Cell Metabolism, 2015, 22, 838-850.	7.2	71
224	Genetic Analysis of Connective Tissue Growth Factor as an Effector of Transforming Growth Factor \hat{l}^2 Signaling and Cardiac Remodeling. Molecular and Cellular Biology, 2015, 35, 2154-2164.	1.1	70
225	Reversal of Cardiac Hypertrophy in Transgenic Disease Models by Calcineurin Inhibition. Journal of Molecular and Cellular Cardiology, 2000, 32, 697-709.	0.9	69
226	Ca ²⁺ Influx Through T- and L-Type Ca ²⁺ Channels Have Different Effects on Myocyte Contractility and Induce Unique Cardiac Phenotypes. Circulation Research, 2008, 103, 1109-1119.	2.0	69
227	Autophagic cell death is dependent on lysosomal membrane permeability through Bax and Bak. ELife, 2017, 6, .	2.8	69
228	CONTRIBUTION OF MKP-1 REGULATION OF p38 TO ENDOTOXIN TOLERANCE. Shock, 2005, 23, 80-87.	1.0	68
229	A friend within the heart: natriuretic peptide receptor signaling. Journal of Clinical Investigation, 2003, 111, 1275-1277.	3.9	68
230	Plasma membrane Ca2+-ATPase isoform 4 antagonizes cardiac hypertrophy in association with calcineurin inhibition in rodents. Journal of Clinical Investigation, 2009, 119, 976-85.	3.9	66
231	Activation of GATA-4 by Serotonin in Pulmonary Artery Smooth Muscle Cells. Journal of Biological Chemistry, 2003, 278, 17525-17531.	1.6	62
232	Cell-specific ablation of Hsp47 defines the collagen-producing cells in the injured heart. JCI Insight, 2019, 4, e128722.	2.3	62
233	Is Nuclear Factor κB an Attractive Therapeutic Target for Treating Cardiac Hypertrophy?. Circulation, 2003, 108, 638-640.	1.6	61
234	Overexpression of the Na ⁺ /K ⁺ ATPase α2 But Not α1 Isoform Attenuates Pathological Cardiac Hypertrophy and Remodeling. Circulation Research, 2014, 114, 249-256.	2.0	61

#	Article	IF	Citations
235	TOX Provides a Link Between Calcineurin Activation and CD8 Lineage Commitment. Journal of Experimental Medicine, 2004, 199, 1089-1099.	4.2	60
236	Tamoxifen administration routes and dosage for inducible Cre-mediated gene disruption in mouse hearts. Transgenic Research, 2010, 19, 715-725.	1.3	60
237	Conditional Transgenic Expression of Fibroblast Growth Factor 9 in the Adult Mouse Heart Reduces Heart Failure Mortality After Myocardial Infarction. Circulation, 2011, 123, 504-514.	1.6	60
238	Thbs1 induces lethal cardiac atrophy through PERK-ATF4 regulated autophagy. Nature Communications, 2021, 12, 3928.	5.8	60
239	The mitochondrial calcium uniporter underlies metabolic fuel preference in skeletal muscle. JCI Insight, 2018, 3, .	2.3	60
240	Enhanced myocyte contractility and Ca2+ handling in a calcineurin transgenic model of heart failure. Cardiovascular Research, 2002, 54, 105-116.	1.8	59
241	Overexpression of calcineurin in mouse causes sudden cardiac death associated with decreased density of K+ channels. Cardiovascular Research, 2003, 57, 320-332.	1.8	59
242	Sumo E2 Enzyme UBC9 Is Required for Efficient Protein Quality Control in Cardiomyocytes. Circulation Research, 2014, 115, 721-729.	2.0	59
243	Deletion of Periostin Protects Against Atherosclerosis in Mice by Altering Inflammation and Extracellular Matrix Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 60-68.	1.1	59
244	Inhibition of Calcineurin and Sarcolemmal Ca $2+$ Influx Protects Cardiac Morphology and Ventricular Function in K ν 4.2N Transgenic Mice. Circulation, 2002, 105, 1850-1856.	1.6	58
245	Divergent Signaling Pathways Converge on GATA4 to Regulate Cardiac Hypertrophic Gene Expression. Journal of Molecular and Cellular Cardiology, 2002, 34, 611-616.	0.9	58
246	Unraveling the secrets of a double life: Contractile versus signaling Ca2+ in a cardiac myocyte. Journal of Molecular and Cellular Cardiology, 2012, 52, 317-322.	0.9	58
247	Cdc42 is an antihypertrophic molecular switch in the mouse heart. Journal of Clinical Investigation, 2009, 119, 3079-3088.	3.9	58
248	Cardiac Hypertrophy and Reduced Contractility in Hearts Deficient in the Titin Kinase Region. Circulation, 2007, 115, 743-751.	1.6	57
249	Inhibition of PKCÎ \pm /Î 2 With Ruboxistaurin Antagonizes Heart Failure in Pigs After Myocardial Infarction Injury. Circulation Research, 2011, 109, 1396-1400.	2.0	57
250	Calcineurin, Mitochondrial Membrane Potential, and Cardiomyocyte Apoptosis. Circulation Research, 2001, 88, 1220-1222.	2.0	56
251	Overexpression of Latent TGF \hat{l}^2 Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGF \hat{l}^2 . PLoS Genetics, 2016, 12, e1006019.	1.5	56
252	Thrombospondin 1 protects pancreatic \hat{l}^2 -cells from lipotoxicity via the PERKâ \in "NRF2 pathway. Cell Death and Differentiation, 2016, 23, 1995-2006.	5.0	56

#	Article	IF	CITATIONS
253	SERCA1 overexpression minimizes skeletal muscle damage in dystrophic mouse models. American Journal of Physiology - Cell Physiology, 2015, 308, C699-C709.	2.1	55
254	Sarcolipin overexpression improves muscle energetics and reduces fatigue. Journal of Applied Physiology, 2015, 118, 1050-1058.	1.2	55
255	Genetic Manipulation of Dysferlin Expression in Skeletal Muscle. American Journal of Pathology, 2009, 175, 1817-1823.	1.9	54
256	Thioredoxin 1 Is Essential for Sodium Sulfide–Mediated Cardioprotection in the Setting of Heart Failure. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 744-751.	1.1	54
257	Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation. Nature Communications, 2020, 11, 4549.	5 . 8	54
258	DUSP8 Regulates Cardiac Ventricular Remodeling by Altering ERK1/2 Signaling. Circulation Research, 2016, 119, 249-260.	2.0	53
259	New Myocyte Formation in the Adult Heart. Circulation Research, 2018, 123, 159-176.	2.0	53
260	Debio-025 is more effective than prednisone in reducing muscular pathology in mdx mice. Neuromuscular Disorders, 2010, 20, 753-760.	0.3	52
261	Enhanced Ca2+ influx from STIM1–Orai1 induces muscle pathology in mouse models of muscular dystrophy. Human Molecular Genetics, 2014, 23, 3706-3715.	1.4	52
262	Pharmacological and Activated FibroblastÂTargeting of Gβγ-GRK2 AfterÂMyocardial Ischemia Attenuates Heart Failure Progression. Journal of the American College of Cardiology, 2017, 70, 958-971.	1.2	52
263	Pathogenesis of Dilated Cardiomyopathy. American Journal of Pathology, 1999, 155, 2101-2113.	1.9	51
264	PDK1 coordinates survival pathways and \hat{l}^2 -adrenergic response in the heart. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8689-8694.	3.3	51
265	Enhanced Ca2+Channel Currents in Cardiac Hypertrophy Induced by Activation of Calcineurin-dependent Pathway. Journal of Molecular and Cellular Cardiology, 2001, 33, 249-259.	0.9	50
266	Moderate Calcium Channel Dysfunction in Adult Mice with Inducible Cardiomyocyte-specific Excision of the cacnb2 Gene. Journal of Biological Chemistry, 2011, 286, 15875-15882.	1.6	50
267	P38î± MAPK underlies muscular dystrophy and myofiber death through a Bax-dependent mechanism. Human Molecular Genetics, 2014, 23, 5452-5463.	1.4	49
268	ERK1/2 signaling induces skeletal muscle slow fiber-type switching and reduces muscular dystrophy disease severity. JCl Insight, 2019, 4, .	2.3	49
269	Acute lipoprotein lipase deletion in adult mice leads to dyslipidemia and cardiac dysfunction. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E755-E760.	1.8	47
270	A 20/20 view of ANT function in mitochondrial biology and necrotic cell death. Journal of Molecular and Cellular Cardiology, 2020, 144, A3-A13.	0.9	47

#	Article	IF	CITATIONS
271	Detection of 14 HLA-DQB1 alleles by oligotyping. Human Immunology, 1991, 31, 114-122.	1.2	46
272	A mouse model of familial hypertrophic cardiomyopathy caused by a \hat{l}_{\pm} -tropomyosin mutation. Molecular and Cellular Biochemistry, 2003, 251, 33-42.	1.4	46
273	Regulation of Calcineurin through Transcriptional Induction of the calcineurin AÎ ² Promoter In Vitro and In Vivo. Molecular and Cellular Biology, 2005, 25, 6649-6659.	1.1	46
274	Apoptotic cell death "Nixed" by an ER-mitochondrial necrotic pathway. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9031-9032.	3.3	46
275	Are Resident c-Kit ⁺ Cardiac Stem Cells Really All That Are Needed to Mend a Broken Heart?. Circulation Research, 2013, 113, 1037-1039.	2.0	46
276	Inducible and myocyte-specific inhibition of PKC $\hat{l}\pm$ enhances cardiac contractility and protects against infarction-induced heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3768-H3771.	1.5	45
277	TEAD-1 Overexpression in the Mouse Heart Promotes an Age-dependent Heart Dysfunction. Journal of Biological Chemistry, 2010, 285, 13721-13735.	1.6	45
278	Exposure to Radiocontrast Agents Induces Pancreatic Inflammation by Activation of Nuclear Factor-κB, Calcium Signaling, and Calcineurin. Gastroenterology, 2015, 149, 753-764.e11.	0.6	45
279	The Protein Phosphatase Calcineurin Determines Basal Parathyroid Hormone Gene Expression. Molecular Endocrinology, 2005, 19, 516-526.	3.7	44
280	Phosphodiesterase 5 inhibition blocks pressure overload-induced cardiac hypertrophy independent of the calcineurin pathway. Cardiovascular Research, 2008, 81, 301-309.	1.8	44
281	Heart-specific Deletion of CnB1 Reveals Multiple Mechanisms Whereby Calcineurin Regulates Cardiac Growth and Function. Journal of Biological Chemistry, 2010, 285, 6716-6724.	1.6	44
282	Parsing Good Versus Bad Signaling Pathways in the Heart. Circulation Research, 2013, 113, 16-19.	2.0	44
283	Myofiber-specific inhibition of $TGF\hat{l}^2$ signaling protects skeletal muscle from injury and dystrophic disease in mice. Human Molecular Genetics, 2014, 23, 6903-6915.	1.4	44
284	Calcineurin regulates NFAT-dependent iNOS expression and protection of cardiomyocytes: Co-operation with Src tyrosine kinase. Cardiovascular Research, 2006, 71, 672-683.	1.8	43
285	Increasing Cardiac Contractility After Myocardial Infarction Exacerbates Cardiac Injury and Pump Dysfunction. Circulation Research, 2010, 107, 800-809.	2.0	43
286	Cardiac-specific deletion of protein phosphatase $1^{\hat{l}^2}$ promotes increased myofilament protein phosphorylation and contractile alterations. Journal of Molecular and Cellular Cardiology, 2015, 87, 204-213.	0.9	43
287	MEF2B Is a Component of a Smooth Muscle-specific Complex That Binds an A/T-rich Element Important for Smooth Muscle Myosin Heavy Chain Gene Expression. Journal of Biological Chemistry, 1998, 273, 1511-1518.	1.6	42
288	Cholecystokinin Activates Pancreatic Calcineurin-NFAT Signaling In Vitro and In Vivo. Molecular Biology of the Cell, 2008, 19, 198-206.	0.9	42

#	Article	lF	CITATIONS
289	Calcineurin Increases Cardiac Transient Outward K+ Currents via Transcriptional Up-regulation of Kv4.2 Channel Subunits. Journal of Biological Chemistry, 2006, 281, 38498-38506.	1.6	41
290	Targeting latent TGFÎ ² release in muscular dystrophy. Science Translational Medicine, 2014, 6, 259ra144.	5.8	41
291	Thrombospondin expression in myofibers stabilizes muscle membranes. ELife, 2016, 5, .	2.8	41
292	Inositol 1,4,5-trisphosphate-mediated sarcoplasmic reticulumâ€"mitochondrial crosstalk influences adenosine triphosphate production via mitochondrial Ca ²⁺ uptake through the mitochondrial ryanodine receptor in cardiac myocytes. Cardiovascular Research, 2016, 112, 491-501.	1.8	40
293	Most of the Dust Has Settled. Circulation Research, 2016, 118, 17-19.	2.0	40
294	GATA6 Promotes Angiogenic Function and Survival in Endothelial Cells by Suppression of Autocrine Transforming Growth Factor \hat{l}^2 /Activin Receptor-like Kinase 5 Signaling. Journal of Biological Chemistry, 2011, 286, 5680-5690.	1.6	39
295	Myofibroblast-Specific $TGF\hat{l}^2$ Receptor II Signaling in the Fibrotic Response to Cardiac Myosin Binding Protein C-Induced Cardiomyopathy. Circulation Research, 2018, 123, 1285-1297.	2.0	39
296	Calcineurin protects the heart in a murine model of dilated cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2010, 48, 1080-1087.	0.9	38
297	TGFBI functions similar to periostin but is uniquely dispensable during cardiac injury. PLoS ONE, 2017, 12, e0181945.	1.1	38
298	Retinoic Acid Inhibits Cardiac Neural Crest Migration by Blocking c-Jun N-Terminal Kinase Activation. Developmental Biology, 2001, 232, 351-361.	0.9	37
299	The Presence of Lys27 Instead of Asn27 in Human Phospholamban Promotes Sarcoplasmic Reticulum Ca 2+ -ATPase Superinhibition and Cardiac Remodeling. Circulation, 2006, 113, 995-1004.	1.6	37
300	Cardiac Fibrosis in Proteotoxic Cardiac Disease is Dependent Upon Myofibroblast TGFâ€Î² Signaling. Journal of the American Heart Association, 2018, 7, e010013.	1.6	37
301	Thrombospondin-3 augments injury-induced cardiomyopathy by intracellular integrin inhibition and sarcolemmal instability. Nature Communications, 2019, 10, 76.	5.8	37
302	Repression of Cyclin D1 Expression Is Necessary for the Maintenance of Cell Cycle Exit in Adult Mammalian Cardiomyocytes. Journal of Biological Chemistry, 2014, 289, 18033-18044.	1.6	36
303	MCUb Induction Protects the Heart From Postischemic Remodeling. Circulation Research, 2020, 127, 379-390.	2.0	36
304	Re-evaluating sarcoplasmic reticulum function in heart failure. Nature Medicine, 2000, 6, 942-942.	15.2	35
305	Analysis of the transcriptional activity of endogenous NFAT5 in primary cells using transgenic NFAT-luciferase reporter mice. BMC Molecular Biology, 2008, 9, 13.	3.0	35
306	Adenine nucleotide translocase-1 induces cardiomyocyte death through upregulation of the pro-apoptotic protein Bax. Journal of Molecular and Cellular Cardiology, 2009, 46, 969-977.	0.9	35

#	Article	IF	CITATIONS
307	Evidence for Minimal Cardiogenic Potential of Stem Cell Antigen 1–Positive Cells in the Adult Mouse Heart. Circulation, 2018, 138, 2960-2962.	1.6	35
308	A specialized population of Periostin-expressing cardiac fibroblasts contributes to postnatal cardiomyocyte maturation and innervation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21469-21479.	3.3	35
309	Rcan1 negatively regulates FcÉ>RI-mediated signaling and mast cell function. Journal of Experimental Medicine, 2009, 206, 195-207.	4.2	34
310	Gata4-Dependent Differentiation of c-Kit ⟨sup⟩+⟨ sup⟩ â€"Derived Endothelial Cells Underlies Artefactual Cardiomyocyte Regeneration in the Heart. Circulation, 2018, 138, 1012-1024.	1.6	34
311	Genetic Disruption of Calcineurin Improves Skeletal Muscle Pathology and Cardiac Disease in a Mouse Model of Limb-Girdle Muscular Dystrophy. Journal of Biological Chemistry, 2007, 282, 10068-10078.	1.6	33
312	BEX1 is an RNA-dependent mediator of cardiomyopathy. Nature Communications, 2017, 8, 1875.	5.8	33
313	Undeniable Evidence That the Adult Mammalian Heart Lacks an Endogenous Regenerative Stem Cell. Circulation, 2018, 138, 806-808.	1.6	33
314	Is p53 the Long-Sought Molecular Trigger for Cyclophilin D–Regulated Mitochondrial Permeability Transition Pore Formation and Necrosis?. Circulation Research, 2012, 111, 1258-1260.	2.0	32
315	Na ⁺ Dysregulation Coupled with Ca ²⁺ Entry through NCX1 Promotes Muscular Dystrophy in Mice. Molecular and Cellular Biology, 2014, 34, 1991-2002.	1.1	32
316	Excess SMAD signaling contributes to heart and muscle dysfunction in muscular dystrophy. Human Molecular Genetics, 2014, 23, 6722-6731.	1.4	32
317	Requirement of transcription factor NFAT in developing atrial myocardium. Journal of Cell Biology, 2003, 161, 861-874.	2.3	31
318	Isoform- and tissue-specific regulation of the Ca ²⁺ -sensitive transcription factor NFAT in cardiac myocytes and heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H2001-H2009.	1.5	31
319	Cardiac function and electrical remodeling of the calcineurin-overexpressed transgenic mouse. Cardiovascular Research, 2002, 54, 117-132.	1.8	30
320	Requirement of the calcineurin subunit gene canB2 for indirect flight muscle formation in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1040-1045.	3.3	30
321	Parsing the Roles of the Transcription Factors GATA-4 and GATA-6 in the Adult Cardiac Hypertrophic Response. PLoS ONE, 2013, 8, e84591.	1.1	30
322	Genetic overexpression of Serpina3n attenuates muscular dystrophy in mice. Human Molecular Genetics, 2016, 25, 1192-1202.	1.4	30
323	Postnatal Ablation of Foxm1 from Cardiomyocytes Causes Late Onset Cardiac Hypertrophy and Fibrosis without Exacerbating Pressure Overload-Induced Cardiac Remodeling. PLoS ONE, 2012, 7, e48713.	1.1	30
324	Inhibition of p38 reduces myocardial infarction injury in the mouse but not pig after ischemia-reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2747-H2751.	1.5	29

#	Article	IF	CITATIONS
325	Overlapping and differential functions of ATF6 \hat{l}_{\pm} versus ATF6 \hat{l}_{\pm}^2 in the mouse heart. Scientific Reports, 2019, 9, 2059.	1.6	29
326	Calcineurin AÂ Is Central to the Expression of the Renal Type II Na/Pi Co-transporter Gene and to the Regulation of Renal Phosphate Transport. Journal of the American Society of Nephrology: JASN, 2004, 15, 2972-2980.	3.0	28
327	Pharmacological and genetic inhibition of calcineurin protects against carbachol-induced pathological zymogen activation and acinar cell injury. American Journal of Physiology - Renal Physiology, 2012, 302, G898-G905.	1.6	28
328	Placental Growth Factor as a Protective Paracrine Effector in the Heart. Trends in Cardiovascular Medicine, 2011, 21, 220-224.	2.3	27
329	Letter by Molkentin Regarding Article, "The Absence of Evidence Is Not Evidence of Absence: The Pitfalls of Cre Knock-Ins in the c-Kit Locus― Circulation Research, 2014, 115, e21-3.	2.0	27
330	Cardiac-specific deficiency of the mitochondrial calcium uniporter augments fatty acid oxidation and functional reserve. Journal of Molecular and Cellular Cardiology, 2019, 127, 223-231.	0.9	27
331	Developing small molecules to inhibit kinases unkind to the heart: p38 MAPK as a case in point. Drug Discovery Today Disease Mechanisms, 2010, 7, e123-e127.	0.8	26
332	Developmental vascular regression is regulated by a Wnt/ \hat{l}^2 -catenin, MYC, P21 (CDKN1A) pathway that controls cell proliferation and cell death. Development (Cambridge), 2018, 145, .	1.2	26
333	Enhanced basal contractility but reduced excitation-contraction coupling efficiency and \hat{l}^2 -adrenergic reserve of hearts with increased Cav1.2 activity. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H519-H528.	1.5	25
334	Persistent increases in Ca2+ influx through Cav1.2 shortens action potential and causes Ca2+ overload-induced afterdepolarizations and arrhythmias. Basic Research in Cardiology, 2016, 111, 4.	2.5	25
335	Dissection of Thrombospondin-4 Domains Involved in Intracellular Adaptive Endoplasmic Reticulum Stress-Responsive Signaling. Molecular and Cellular Biology, 2016, 36, 2-12.	1.1	25
336	Nanoparticle Delivery of STAT3 Alleviates Pulmonary Hypertension in a Mouse Model of Alveolar Capillary Dysplasia. Circulation, 2021, 144, 539-555.	1.6	25
337	Phosphorylation of Protein Phosphatase Inhibitor-1 by Protein Kinase C. Journal of Biological Chemistry, 2006, 281, 24322-24335.	1.6	24
338	The EYA3 tyrosine phosphatase activity promotes pulmonary vascular remodeling in pulmonary arterial hypertension. Nature Communications, 2019, 10, 4143.	5.8	24
339	Cysteine 202 of cyclophilin D is a site of multiple post-translational modifications and plays a role in cardioprotection. Cardiovascular Research, 2021, 117, 212-223.	1.8	24
340	A novel class of cardioprotective small-molecule PTP inhibitors. Pharmacological Research, 2020, 151, 104548.	3.1	23
341	Genetic inhibition of calcineurin induces diastolic dysfunction in mice with chronic pressure overload. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1814-H1819.	1.5	22
342	A Calcineurin-NFATc3-Dependent Pathway Regulates Skeletal Muscle Differentiation and Slow Myosin Heavy-Chain Expression. Molecular and Cellular Biology, 2000, 20, 6600-6611.	1.1	22

#	Article	IF	CITATIONS
343	Depletion of skeletal muscle satellite cells attenuates pathology in muscular dystrophy. Nature Communications, 2022, 13, .	5.8	22
344	Defective Flux of Thrombospondin-4 through the Secretory Pathway Impairs Cardiomyocyte Membrane Stability and Causes Cardiomyopathy. Molecular and Cellular Biology, 2018, 38, .	1.1	21
345	A mouse model of familial hypertrophic cardiomyopathy caused by a alpha-tropomyosin mutation. Molecular and Cellular Biochemistry, 2003, 251, 33-42.	1.4	21
346	Requirement of Calcineurin Al 2 for the Survival of Naive T Cells. Journal of Immunology, 2008, 180, 106-112.	0.4	20
347	Tropomyosin Dephosphorylation Results in Compensated Cardiac Hypertrophy. Journal of Biological Chemistry, 2012, 287, 44478-44489.	1.6	20
348	Cathepsin S Contributes to the Pathogenesis of Muscular Dystrophy in Mice. Journal of Biological Chemistry, 2016, 291, 9920-9928.	1.6	20
349	Constitutively active MEK1 rescues cardiac dysfunction caused by overexpressed GSK-3α during aging and hemodynamic pressure overload. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H979-H988.	1.5	19
350	Caveolae-localized L-type Ca2+ channels do not contribute to function or hypertrophic signalling in the mouse heart. Cardiovascular Research, 2017, 113, 749-759.	1.8	19
351	Disruption of valosin-containing protein activity causes cardiomyopathy and reveals pleiotropic functions in cardiac homeostasis. Journal of Biological Chemistry, 2019, 294, 8918-8929.	1.6	19
352	Calcineurin A- \hat{l}^2 is required for hypertrophy but not matrix expansion in the diabetic kidney. Journal of Cellular and Molecular Medicine, 2011, 15, 414-422.	1.6	18
353	TAK1 Regulates Myocardial Response to Pathological Stress via NFAT, NFήB and Bnip3 Pathways. Scientific Reports, 2015, 5, 16626.	1.6	18
354	Novel and nondetected human signaling protein polymorphisms. Physiological Genomics, 2002, 10, 159-168.	1.0	17
355	Dysfunctional ryanodine receptor and cardiac hypertrophy: role of signaling molecules. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H2187-H2195.	1.5	17
356	CARdiac Immunotherapy: T Cells Engineered to Treat the Fibrotic Heart. Molecular Therapy, 2019, 27, 1869-1871.	3.7	17
357	Type 2 diabetes risk gene Dusp8 regulates hypothalamic Jnk signaling and insulin sensitivity. Journal of Clinical Investigation, 2020, 130, 6093-6108.	3.9	17
358	Ablation of Calcineurin A \hat{l}^2 Reveals Hyperlipidemia and Signaling Cross-talks with Phosphodiesterases. Journal of Biological Chemistry, 2013, 288, 3477-3488.	1.6	16
359	Nuclear calcineurin is a sensor for detecting Ca2+ release from the nuclear envelope via IP3R. Journal of Molecular Medicine, 2018, 96, 1239-1249.	1.7	16
360	Stiffness of thermoresponsive gelatin-based dynamic hydrogels affects fibroblast activation. Polymer Chemistry, 2019, 10, 6360-6367.	1.9	16

#	Article	IF	Citations
361	Negative regulation of cyclin-dependent kinase 5 targets by protein kinase C. European Journal of Pharmacology, 2008, 581, 270-275.	1.7	15
362	Increasing Tâ€type calcium channel activity by βâ€adrenergic stimulation contributes to βâ€adrenergic regulation of heart rates. Journal of Physiology, 2018, 596, 1137-1151.	1.3	15
363	Protein kinase C alpha enhances sodium–calcium exchange during store-operated calcium entry in mouse platelets. Cell Calcium, 2010, 48, 333-340.	1.1	14
364	RCANs regulate the convergent roles of NFATc1 in bone homeostasis. Scientific Reports, 2016, 6, 38526.	1.6	14
365	Identity Crisis for Regenerative Cardiac cKit + Cells. Circulation Research, 2017, 121, 1130-1132.	2.0	14
366	Calcineurin-induced energy wasting in a transgenic mouse model of heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1459-H1466.	1.5	13
367	An Unbiased High-Throughput Screen to Identify Novel Effectors That Impact on Cardiomyocyte Aggregate Levels. Circulation Research, 2017, 121, 604-616.	2.0	13
368	Magnetic resonance imaging assessment of cardiac dysfunction in \hat{l} -sarcoglycan null mice. Neuromuscular Disorders, 2011, 21, 68-73.	0.3	12
369	Monophosphothreonyl extracellular signal-regulated kinases 1 and 2 (ERK1/2) are formed endogenously in intact cardiac myocytes and are enzymically active. Cellular Signalling, $2011, 23, 468-477$.	1.7	12
370	MEF2C repressor variant deregulation leads to cell cycle re-entry and development of heart failure. EBioMedicine, 2020, 51, 102571.	2.7	12
371	A high-throughput screening identifies ZNF418 as a novel regulator of the ubiquitin-proteasome system and autophagy-lysosomal pathway. Autophagy, 2021, 17, 3124-3139.	4.3	12
372	Hypertrophic defect unmasked by calcineurin expression in asymptomatic tropomodulin overexpressing transgenic mice. Cardiovascular Research, 2000, 46, 90-101.	1.8	11
373	Response to Torella et al. Circulation Research, 2014, 114, e27.	2.0	11
374	Genetic Reduction in Left Ventricular Protein Kinase C- \hat{l}_{\pm} and Adverse Ventricular Remodeling in Human Subjects. Circulation Genomic and Precision Medicine, 2018, 11, e001901.	1.6	10
375	Cardiac Cell Therapy Fails to Rejuvenate the Chronically Scarred Rodent Heart. Circulation, 2021, 144, 328-331.	1.6	10
376	Apoptosis Repressor with a CARD Domain (ARC) Restrains Bax-Mediated Pathogenesis in Dystrophic Skeletal Muscle. PLoS ONE, 2013, 8, e82053.	1.1	10
377	Fibroblasts orchestrate cellular crosstalk in the heart through the ECM. , 2022, 1, 312-321.		10
378	Reply to Revisiting calcineurin and human heart failure. Nature Medicine, 2000, 6, 3-3.	15.2	9

#	Article	IF	CITATIONS
379	Cyclophilin D regulates necrosis, but not apoptosis, of murine eosinophils. American Journal of Physiology - Renal Physiology, 2016, 310, G609-G617.	1.6	9
380	Nuclear Dbf2-related protein kinases (NDRs) in isolated cardiac myocytes and the myocardium: Activation by cellular stresses and by phosphoprotein serine-/threonine-phosphatase inhibitors. Cellular Signalling, 2008, 20, 1564-1577.	1.7	8
381	Protein Kinase C Inhibition With Ruboxistaurin Increases Contractility and Reduces Heart Size in a Swine Model of HeartÂFailure With Reduced Ejection Fraction. JACC Basic To Translational Science, 2017, 2, 669-683.	1.9	8
382	Identity of the elusive mitochondrial permeability transition pore: what it might be, what it was, and what it still could be. Current Opinion in Physiology, 2018, 3, 57-62.	0.9	8
383	van Berlo et al. reply. Nature, 2018, 555, E18-E18.	13.7	8
384	Hippo signaling does it again: arbitrating cardiac fibroblast identity and activation. Genes and Development, 2019, 33, 1457-1459.	2.7	8
385	A mouse model of familial hypertrophic cardiomyopathy caused by a \hat{l}_{\pm} -tropomyosin mutation. , 2003, , 33-42.		8
386	Locating heart failure. Nature Medicine, 2005, 11, 1284-1285.	15.2	7
387	The Transcription Factor $C/EBP\hat{l}^2$ Serves as a Master Regulator of Physiologic Cardiac Hypertrophy. Circulation Research, 2011, 108, 277-278.	2.0	7
388	Mitsugumin 29 regulates t-tubule architecture in the failing heart. Scientific Reports, 2017, 7, 5328.	1.6	7
389	Cardiac Cell Therapy Rejuvenates the Infarcted Rodent Heart via Direct Injection but Not by Vascular Infusion. Circulation, 2020, 141, 1037-1039.	1.6	7
390	CaMKII Does It Again. Circulation Research, 2013, 112, 1208-1211.	2.0	6
391	Interleukin-1α dependent survival of cardiac fibroblasts is associated with StAR/STARD1 expression and improved cardiac remodeling and function after myocardial infarction. Journal of Molecular and Cellular Cardiology, 2021, 155, 125-137.	0.9	6
392	Nemo-Like Kinase (NLK) Is a Pathological Signaling Effector in the Mouse Heart. PLoS ONE, 2016, 11, e0164897.	1.1	5
393	Fondation Leducq Transatlantic Network of Excellence Targeting Mitochondria to Treat Heart Disease. Circulation Research, 2019, 124, 1294-1296.	2.0	4
394	Refined CLARITY-Based Tissue Clearing for Three-Dimensional Fibroblast Organization in Healthy and Injured Mouse Hearts. Journal of Visualized Experiments, 2021, , .	0.2	4
395	Seroprevalence of SARS-CoV-2 infection in Cincinnati Ohio USA from August to December 2020. PLoS ONE, 2021, 16, e0254667.	1.1	4
396	Resident macrophages keep mitochondria running in the heart. Cell Research, 2020, 30, 1057-1058.	5.7	3

#	Article	IF	CITATIONS
397	Impact of circadian time of dosing on cardiomyocyte-autonomous effects of glucocorticoids. Molecular Metabolism, 2022, 62, 101528.	3.0	3
398	Helmut Drexler, MD. Circulation, 2009, 120, 2402-2403.	1.6	1
399	Applying Modern Transcriptomics to Interrogate the Human Cardiac Fibroblast. JACC Basic To Translational Science, 2016, 1, 603-605.	1.9	1
400	Spatial Gene Profiling in the Ischemic Heart. Circulation, 2017, 136, 1410-1411.	1.6	1
401	Mutual antagonism between IP3RII and miRNA-133a regulates calcium signals and cardiac hypertrophy. Journal of General Physiology, 2013, 141, i1-i1.	0.9	1
402	DUSP6-Mediated Negative Feedback to Oncogenic Tyrosine Kinase Signaling Prevents Excessive Accumulation of ROS and Enables Leukemia Cell Survival. Blood, 2011, 118, 1479-1479.	0.6	1
403	Negative Feedback Signaling Enables Leukemic Transformation by Oncogenic Tyrosine Kinases. Blood, 2012, 120, 1352-1352.	0.6	1
404	Correction: Cardiomyocytes fuse with surrounding noncardiomyocytes and reenter the cell cycle. Journal of Cell Biology, 2004, 167, 985-985.	2.3	0
405	Cardiac Hypertrophy. , 2006, , 146-156.		0
406	Cavβ2a TG mice treated with hight fat diet and Lâ€Name is a model for HFpEF. FASEB Journal, 2021, 35, .	0.2	0
407	Calcineurin Deficiency Decreases Inflammatory Lesions in TGFbeta1â€deficient Mice. FASEB Journal, 2008, 22, 667.21.	0.2	0
408	Rcan1 negatively regulates FceRI-mediated signaling and mast cell function. Journal of Cell Biology, 2009, 184, i2-i2.	2.3	0
409	C1qbp localizes to mitochondria and protects against oxidative stressâ€induced mitochondrial dysfunction and cell death. FASEB Journal, 2009, 23, LB95.	0.2	0
410	Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species. Journal of Experimental Medicine, 2011, 208, i20-i20.	4.2	0
411	Palmitoylationâ€Dependent Regulation of RhoGTPase Signaling and Cardiac Pathophysiology. FASEB Journal, 2019, 33, 632.1.	0.2	0
412	At the Brink of Human Therapy to Generate New Myocytes in the Adult Injured Heart. Circulation, 2022, 145, 1356-1358.	1.6	0
413	MO289: IL33 Exerts Toxicity in the Heart as Secreted by Renal Inflammation. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	0