List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4099427/publications.pdf Version: 2024-02-01

FELIDA RALITISTA

#	Article	IF	CITATIONS
1	Sulfonated organosilica-aluminum phosphates as useful catalysts for acid-catalyzed reactions: Insights into the effect of synthesis parameters on the final catalyst. Catalysis Today, 2022, 390-391, 12-21.	4.4	3
2	Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review. Energies, 2022, 15, 3173.	3.1	24
3	Hydrogenation of α,β-Unsaturated Carbonyl Compounds over Covalently Heterogenized Ru(II) Diphosphine Complexes on AlPO4-Sepiolite Supports. Catalysts, 2021, 11, 289.	3.5	1
4	Evaluation of Dimethyl Carbonate as Alternative Biofuel. Performance and Smoke Emissions of a Diesel Engine Fueled with Diesel/Dimethyl Carbonate/Straight Vegetable Oil Triple Blends. Sustainability, 2021, 13, 1749.	3.2	7
5	Fourth generation synthesis of solketal by glycerol acetalization with acetone: A solar-light photocatalytic approach. Journal of the Taiwan Institute of Chemical Engineers, 2021, 125, 297-303.	5.3	10
6	Enzymatic Production of Ecodiesel by Using a Commercial Lipase CALB, Immobilized by Physical Adsorption on Mesoporous Organosilica Materials. Catalysts, 2021, 11, 1350.	3.5	5
7	Outlook for Direct Use of Sunflower and Castor Oils as Biofuels in Compression Ignition Diesel Engines, Being Part of Diesel/Ethyl Acetate/Straight Vegetable Oil Triple Blends. Energies, 2020, 13, 4836.	3.1	17
8	Acetone Prospect as an Additive to Allow the Use of Castor and Sunflower Oils as Drop-In Biofuels in Diesel/Acetone/Vegetable Oil Triple Blends for Application in Diesel Engines. Molecules, 2020, 25, 2935.	3.8	16
9	Biofuels from Diethyl Carbonate and Vegetable Oils for Use in Triple Blends with Diesel Fuel: Effect on Performance and Smoke Emissions of a Diesel Engine. Energies, 2020, 13, 6584.	3.1	10
10	Diethyl Ether as an Oxygenated Additive for Fossil Diesel/Vegetable Oil Blends: Evaluation of Performance and Emission Quality of Triple Blends on a Diesel Engine. Energies, 2020, 13, 1542.	3.1	25
11	Optimization by response surface methodology of the reaction conditions in 1,3-selective transesterification of sunflower oil, by using CaO as heterogeneous catalyst. Molecular Catalysis, 2020, 484, 110804.	2.0	8
12	Microwave-Assisted Glycerol Etherification Over Sulfonic Acid Catalysts. Materials, 2020, 13, 1584.	2.9	18
13	Sulfonated carbons from olive stones as catalysts in the microwave-assisted etherification of glycerol with tert-butyl alcohol. Molecular Catalysis, 2020, 488, 110921.	2.0	19
14	An Overview of the Production of Oxygenated Fuel Additives by Glycerol Etherification, Either with Isobutene or tert-Butyl Alcohol, over Heterogeneous Catalysts. Energies, 2019, 12, 2364.	3.1	18
15	Performance and Emission Quality Assessment in a Diesel Engine of Straight Castor and Sunflower Vegetable Oils, in Diesel/Gasoline/Oil Triple Blends. Energies, 2019, 12, 2181.	3.1	13
16	Rhizomucor miehei Lipase Supported on Inorganic Solids, as Biocatalyst for the Synthesis of Biofuels: Improving the Experimental Conditions by Response Surface Methodology. Energies, 2019, 12, 831.	3.1	10
17	Biodiesel at the Crossroads: A Critical Review. Catalysts, 2019, 9, 1033.	3.5	57
18	Synthesis, Performance and Emission Quality Assessment of Ecodiesel from Castor Oil in Diesel/Biofuel/Alcohol Triple Blends in a Diesel Engine. Catalysts, 2019, 9, 40.	3.5	27

#	Article	IF	CITATIONS
19	Evaluation of Lipases from Wild Microbial Strains as Biocatalysts in Biodiesel Production. Separations, 2018, 5, 53.	2.4	5
20	Study of the gas-phase glycerol oxidehydration on systems based on transition metals (Co, Fe, V) and aluminium phosphate. Molecular Catalysis, 2018, 455, 68-77.	2.0	19
21	Microwave-assisted etherification of glycerol with tert-butyl alcohol over amorphous organosilica-aluminum phosphates. Applied Catalysis B: Environmental, 2017, 213, 42-52.	20.2	24
22	Insight into the gasâ€phase glycerol dehydration on transition metal modified aluminium phosphates and zeolites. Journal of Chemical Technology and Biotechnology, 2017, 92, 2661-2672.	3.2	9
23	Application of Enzymatic Extracts from a CALB Standard Strain as Biocatalyst within the Context of Conventional Biodiesel Production Optimization. Molecules, 2017, 22, 2025.	3.8	14
24	Sulfonic Acid Functionalization of Different Zeolites and Their Use as Catalysts in the Microwave-Assisted Etherification of Glycerol with tert-Butyl Alcohol. Molecules, 2017, 22, 2206.	3.8	24
25	Biochemical catalytic production of biodiesel. , 2016, , 165-199.		9
26	Catalytic behaviour of mesoporous metal phosphates in the gas-phase glycerol transformation. Journal of Molecular Catalysis A, 2016, 421, 92-101.	4.8	15
27	Etherification of glycerol with tert-butyl alcohol over sulfonated hybrid silicas. Applied Catalysis A: General, 2016, 526, 155-163.	4.3	37
28	Vanadium oxides supported on amorphous aluminum phosphate: Structural and chemical characterization and catalytic performance in the 2-propanol reaction. Journal of Molecular Catalysis A, 2016, 416, 105-116.	4.8	18
29	Production of acrolein from glycerol in liquid phase on heterogeneous catalysts. Chemical Engineering Journal, 2015, 282, 179-186.	12.7	35
30	An overview on glycerol-free processes for the production of renewable liquid biofuels, applicable in diesel engines. Renewable and Sustainable Energy Reviews, 2015, 42, 1437-1452.	16.4	96
31	Production of a Biofuel that Keeps the Glycerol as a Monoglyceride by Using Supported KF as Heterogeneous Catalyst. Energies, 2014, 7, 3764-3780.	3.1	12
32	A Biofuel Similar to Biodiesel Obtained by Using a Lipase from Rhizopus oryzae, Optimized by Response Surface Methodology. Energies, 2014, 7, 3383-3399.	3.1	14
33	Selective ethanolysis of sunflower oil with Lipozyme RM IM, an immobilized Rhizomucor miehei lipase, to obtain a biodiesel-like biofuel, which avoids glycerol production through the monoglyceride formation. New Biotechnology, 2014, 31, 596-601.	4.4	53
34	Development of a new biodiesel that integrates glycerol, by using CaO as heterogeneous catalyst, in the partial methanolysis of sunflower oil. Fuel, 2014, 122, 94-102.	6.4	73
35	Enzymatic production of biodiesel that avoids glycerol as byproduct, by using immobilized Rhizopus Oryzae lipase. New Biotechnology, 2014, 31, S94.	4.4	2
36	Production of a biodiesel-like biofuel without glycerol generation, by using Novozym 435, an immobilized Candida antarctica lipase. Bioresources and Bioprocessing, 2014, 1, .	4.2	26

#	Article	IF	CITATIONS
37	Direct hydroxylation of benzene to phenol by nitrous oxide on amorphous aluminium-iron binary phosphates. Applied Catalysis A: General, 2014, 474, 272-279.	4.3	26
38	Technological challenges for the production of biodiesel in arid lands. Journal of Arid Environments, 2014, 102, 127-138.	2.4	29
39	Biocatalytic Behaviour of Immobilized Rhizopus oryzae Lipase in the 1,3-Selective Ethanolysis of Sunflower Oil to Obtain a Biofuel Similar to Biodiesel. Molecules, 2014, 19, 11419-11439.	3.8	26
40	Biofuel that Keeps Glycerol as Monoglyceride by 1,3-Selective Ethanolysis with Pig Pancreatic Lipase Covalently Immobilized on AlPO4 Support. Energies, 2013, 6, 3879-3900.	3.1	27
41	New Biofuel Integrating Glycerol into Its Composition Through the Use of Covalent Immobilized Pig Pancreatic Lipase. International Journal of Molecular Sciences, 2012, 13, 10091-10112.	4.1	30
42	Production of a new second generation biodiesel with a low cost lipase derived from Thermomyces lanuginosus: Optimization by response surface methodology. Catalysis Today, 2011, 167, 107-112.	4.4	56
43	Production of glycerol-free and alternative biodiesels. , 2011, , 160-176.		0
44	A comprehensive study of reaction parameters in the enzymatic production of novel biofuels integrating glycerol into their composition. Bioresource Technology, 2010, 101, 6657-6662.	9.6	34
45	Sustainable preparation of a novel glycerol-free biofuel by using pig pancreatic lipase: Partial 1,3-regiospecific alcoholysis of sunflower oil. Process Biochemistry, 2009, 44, 334-342.	3.7	78
46	Efficient hydrogenation of alkenes using a highly active and reusable immobilised Ru complex on AlPO4. Journal of Molecular Catalysis A, 2009, 308, 41-45.	4.8	23
47	Gas-phase selective oxidation of chloro- and methoxy-substituted toluenes on TiO2–Sepiolite supported vanadium oxides. Applied Catalysis A: General, 2009, 352, 251-258.	4.3	19
48	Gas-phase selective oxidation of toluene on TiO2–sepiolite supported vanadium oxidesInfluence of vanadium loading on conversion and product selectivities. Catalysis Today, 2007, 128, 183-190.	4.4	16
49	Vanadium oxides supported on TiO2-Sepiolite and Sepiolite: Preparation, structural and acid characterization and catalytic behaviour in selective oxidation of toluene. Applied Catalysis A: General, 2007, 325, 336-344.	4.3	48
50	Screening of amorphous metal–phosphate catalysts for the oxidative dehydrogenation of ethylbenzene to styrene. Applied Catalysis B: Environmental, 2007, 70, 611-620.	20.2	69
51	Influence of the acid–base/redox properties of TiOx-sepiolite supported vanadium oxide catalysts in the gas-phase selective oxidation of toluene. Catalysis Today, 2006, 112, 28-32.	4.4	16
52	Study of catalytic behaviour and deactivation of vanadyl-aluminum binary phosphates in selective oxidation of o-xylene. Chemical Engineering Journal, 2006, 120, 3-9.	12.7	10
53	Heterogeneization of a new Ru(II) homogeneous asymmetric hydrogenation catalyst containing BINAP and the N-tridentate bpea ligand, through covalent attachment on amorphous AlPO4 support. Topics in Catalysis, 2006, 40, 193-205.	2.8	20
54	Vanadyl–aluminum binary phosphate: Al/V ratio influence on their structure and catalytic behavior in the 2-propanol conversion. Catalysis Today, 2003, 78, 269-280.	4.4	25

#	Article	IF	CITATIONS
55	Influence of acid–base properties of catalysts in the gas-phase dehydration–dehydrogenation of cyclohexanol on amorphous AlPO4 and several inorganic solids. Applied Catalysis A: General, 2003, 243, 93-107.	4.3	71
56	Study on dry-media microwave azalactone synthesis on different supported KF catalysts: influence of textural and acid–base properties of supports. Perkin Transactions II RSC, 2002, , 227-234.	1.1	42
57	Compensation effects in the liquid-phase regioselective hydrogenation of functionalized alkenes on supported rhodium catalysts. Studies in Surface Science and Catalysis, 2001, 138, 213-222.	1.5	4
58	Properties of a glucose oxidase covalently immobilized on amorphous AlPO4 support. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 567-577.	1.8	36
59	Vanadyl-aluminum binary phosphate: Effect of thermal treatment over its structure and catalytic properties in selective oxidation of aromatic hydrocarbons. Studies in Surface Science and Catalysis, 2000, , 803-808.	1.5	9
60	Title is missing!. Catalysis Letters, 1999, 60, 229-235.	2.6	11
61	Acetonylacetone conversion on AlPO4–cesium oxide (5–30 wt%) catalysts. Catalysis Letters, 1999, 60, 145-149.	2.6	9
62	Covalent immobilization of acid phosphatase on amorphous AlPO4 support. Journal of Molecular Catalysis B: Enzymatic, 1999, 6, 473-481.	1.8	34
63	Structure, texture, acidity and catalytic performance of AlPO4-caesium oxide catalysts in 2-methyl-3-butyn-2-ol conversion. Journal of Materials Chemistry, 1999, 9, 827-835.	6.7	14
64	Title is missing!. Catalysis Letters, 1998, 52, 205-213.	2.6	22
65	Structure, Texture, Surface Acidity, and Catalytic Activity of AlPO4–ZrO2(5–50 wt% ZrO2) Catalysts Prepared by a Sol–Gel Procedure. Journal of Catalysis, 1998, 179, 483-494.	6.2	38
66	N-Alkylation of aniline with methanol over AlPO4Al2O3 catalysts. Applied Catalysis A: General, 1998, 166, 39-45.	4.3	33
67	Covalent immobilization of porcine pancreatic lipase on amorphous AlPO4 and other inorganic supports. Journal of Chemical Technology and Biotechnology, 1998, 72, 249-254.	3.2	35
68	2-Methyl-3-butyn-2-ol conversion on AlPO4-cesium oxide (20 wt.%) catalysts obtained by impregnation with cesium chloride. Reaction Kinetics and Catalysis Letters, 1998, 65, 239-244.	0.6	2
69	Structure and texture of AlPO4-cesium oxide (20 wt.%) catalysts obtained by impregnation with cesium chloride. Reaction Kinetics and Catalysis Letters, 1998, 65, 245-251.	0.6	2
70	lsomerization of 3,3-dimethyl-1-butene over aluminum and chromium orthophosphates. Reaction Kinetics and Catalysis Letters, 1998, 64, 41-48.	0.6	7
71	Alkylation of phenol with dimethyl carbonate over AlPO4, Al2O3 and AlPO4-Al2O3 catalysts. Reaction Kinetics and Catalysis Letters, 1998, 63, 261-269.	0.6	8
72	Acidity and catalytic activity of AlPO4–B2O3 and Al2O3–B2O3 (5–30wt% B2O3) systems prepared by impregnation. Applied Catalysis A: General, 1998, 170, 159-168.	4.3	40

#	Article	IF	CITATIONS
73	Structural and Textural Characterization of AlPO4–B2O3and Al2O3–B2O3(5–30 wt% B2O3) Systems Obtained by Boric Acid Impregnation. Journal of Catalysis, 1998, 173, 333-344.	6.2	50
74	Covalent immobilization of glucose oxidase on AlPO4 as inorganic support. Progress in Biotechnology, 1998, , 505-512.	0.2	1
75	Covalent immobilization of porcine pancreatic lipase on amorphous AlPO4 and other inorganic supports. Journal of Chemical Technology and Biotechnology, 1998, 72, 249-254.	3.2	0
76	N-methylation of aniline over AlPO4 and AlPO4-metal oxide catalysts. Studies in Surface Science and Catalysis, 1997, , 123-130.	1.5	9
77	N-Alkylation of Aniline with Methanol over CrPO4and CrPO4–AlPO4(5–50 wt% AlPO4) Catalysts. Journal of Catalysis, 1997, 172, 103-109.	6.2	36
78	Phenol methylation over CrPO4 and CrPO4â^'AlPO4 catalysts. Reaction Kinetics and Catalysis Letters, 1997, 62, 47-54.	0.6	9
79	Toluene methylation on AlPO4-Al2O3 catalysts (5–15 wt.% Al2O3). Reaction Kinetics and Catalysis Letters, 1996, 57, 61-70.	0.6	9
80	AlPO4catalyzed Diels-Alder reaction of cyclopentadiene with (-)-menthyl acrylate. Influence of catalyst surface properties. Catalysis Letters, 1996, 36, 215-221.	2.6	12
81	Influence of Niî— Cu alloying on Sepiolite-supported nickel catalysts in the liquid-phase selective hydrogenation of fatty acid ethyl esters. Journal of Molecular Catalysis A, 1996, 104, 229-235.	4.8	28
82	1-Butanol dehydration on AlPO4 and modified AlPO4: catalytic behaviour and deactivation. Applied Catalysis A: General, 1995, 130, 47-65.	4.3	48
83	Conversion of anisole in the presence of methanol over AlPO4â [~] Al2O3 catalysts modified with fluoride and sulfate anions. Reaction Kinetics and Catalysis Letters, 1995, 54, 99-106.	0.6	4
84	Conversion of 2-propanol over chromium orthophosphates. Reaction Kinetics and Catalysis Letters, 1995, 55, 133-141.	0.6	8
85	AlPO4â°'Al2O3 catalysts with low alumina content, VII. Anisole conversion in the presence of methanol. Reaction Kinetics and Catalysis Letters, 1995, 56, 349-362.	0.6	4
86	Conversion of 2-propanol over chromium aluminum orthophosphates. Catalysis Letters, 1995, 35, 143-154.	2.6	8
87	Synthesis of 1,3-dioxolanes catalysed by AlPO4and AlPO4–Al2O3: kinetic and mechanistic studies. Journal of the Chemical Society Perkin Transactions II, 1995, , 815-822.	0.9	10
88	Fluoride and Sulfate Treatment of AlPO4-Al2O3 Catalysts .I. Structure, Texture, Surface Acidity and Catalytic Performance in Cyclohexene Conversion and Cumene Cracking. Journal of Catalysis, 1994, 145, 107-125.	6.2	51
89	Fluoride treatment of AlPO4-Al2O3 catalysts. II. Poisoning experiments by bases for cyclohexene conversion and cumene cracking. Catalysis Letters, 1994, 24, 293-301.	2.6	7
90	Continuous flow toluene methylation over AlPO4 and AlPO4-Al2O3 catalysts. Catalysis Letters, 1994, 26, 159-167.	2.6	10

#	Article	IF	CITATIONS
91	Chromium-aluminium orthophosphates, II. Effect of AlPO4 loading on structure and texture of		

#	Article	IF	CITATIONS
109	The mechanism of liquid-phase catalytic hydrogenation of the olefinic double bond on supported nickel catalysts. Journal of the Chemical Society Perkin Transactions II, 1989, , 493-498.	0.9	15
110	Gas-Phase Dehydrogenation of Alkylbenzenes on Rh/AlPO4Catalysts. Bulletin of the Chemical Society of Japan, 1989, 62, 3670-3674.	3.2	6
111	AIPO4-supported nickel catalysts. Journal of Colloid and Interface Science, 1987, 117, 347-354.	9.4	2
112	AlPO4-supported nickel catalysts VIII. Support effects on the gas-phase dehydrogenation of alkylbenzenes. Journal of Catalysis, 1987, 107, 181-194.	6.2	24
113	Adsorption of alkylaromatic hydrocarbons on AlPO4, Al2O3, and SiO2 catalysts. Journal of Colloid and Interface Science, 1986, 112, 79-86.	9.4	2
114	AlPO4-supported rhodium catalysts. VIII. Gas-phase adsorption of arenes by gas-chromatography. Reaction Kinetics and Catalysis Letters, 1986, 31, 327-332.	0.6	0