Lixia Yue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4099272/publications.pdf

Version: 2024-02-01

42 papers

5,255 citations

218677 26 h-index 330143 37 g-index

44 all docs

44 docs citations

44 times ranked 6075 citing authors

#	Article	IF	Citations
1	A Systemic Review of the Integral Role of TRPM2 in Ischemic Stroke: From Upstream Risk Factors to Ultimate Neuronal Death. Cells, 2022, 11, 491.	4.1	9
2	TRPM2 deficiency in mice protects against atherosclerosis by inhibiting TRPM2–CD36 inflammatory axis in macrophages. , 2022, 1, 344-360.		19
3	Functional coupling of TRPM2 and extrasynaptic NMDARs exacerbates excitotoxicity in ischemic brain injury. Neuron, 2022, 110, 1944-1958.e8.	8.1	35
4	Transient Receptor Potential channels (TRP) in GtoPdb v.2022.1. IUPHAR/BPS Guide To Pharmacology CITE, 2022, 2022, .	0.2	0
5	Upregulation of transient receptor potential melastatin 4 (TRPM4) in ventricular fibroblasts from heart failure patients. Pflugers Archiv European Journal of Physiology, 2021, 473, 521-531.	2.8	13
6	A special issue on calcium dynamics of the heart: remodeling of ion channels and regulatory pathways. Pflugers Archiv European Journal of Physiology, 2021, 473, 313-316.	2.8	0
7	Substantial involvement of TRPM7 inhibition in the therapeutic effect of Ophiocordyceps sinensis on pulmonary hypertension. Translational Research, 2021, 233, 127-143.	5.0	3
8	TRP channels in health and disease at a glance. Journal of Cell Science, 2021, 134, .	2.0	18
9	Transient Receptor Potential channels (TRP) in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	1
10	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. British Journal of Pharmacology, 2021, 178, S157-S245.	5.4	187
11	Biodegradable nanofiber-based piezoelectric transducer. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 214-220.	7.1	139
12	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology, 2019, 176, S142-S228.	5.4	242
13	Ca2+ Signaling in Cardiac Fibroblasts and Fibrosis-Associated Heart Diseases. Journal of Cardiovascular Development and Disease, 2019, 6, 34.	1.6	44
14	Transient Receptor Potential channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	7
15	The role of TRPM7 in fibrosis associated heart diseases. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 3-S23-4.	0.0	O
16	Biodegradable Piezoelectric Force Sensor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 909-914.	7.1	259
17	Daikenchuto (Da-Jian-Zhong-Tang) ameliorates intestinal fibrosis by activating myofibroblast transient receptor potential ankyrin 1 channel. World Journal of Gastroenterology, 2018, 24, 4036-4053.	3.3	18
18	Recapitulating and Correcting Marfan Syndrome in a Cellular Model. International Journal of Biological Sciences, 2017, 13, 588-603.	6.4	19

#	Article	IF	CITATIONS
19	An Isogenic Human ESC Platform for Functional Evaluation of Genome-wide-Association-Study-Identified Diabetes Genes and Drug Discovery. Cell Stem Cell, 2016, 19, 326-340.	11.1	98
20	Identification of key amino acid residues responsible for internal and external pH sensitivity of Orai1/STIM1 channels. Scientific Reports, 2015, 5, 16747.	3.3	29
21	Role of TRP channels in the cardiovascular system. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H157-H182.	3.2	152
22	Functional Cardiomyocytes Derived from Isl1 Cardiac Progenitors via Bmp4 Stimulation. PLoS ONE, 2014, 9, e110752.	2.5	21
23	Sphingosine and <scp>FTY720</scp> are potent inhibitors of the transient receptor potential melastatin 7 (<scp>TRPM7</scp>) channels. British Journal of Pharmacology, 2013, 168, 1294-1312.	5.4	99
24	Lipid Regulation of Cardiac Ion Channels in Heart Disease. , 2013, , 77-100.		1
25	Transient Receptor Potential (TRP) Channels and Cardiac Fibrosis. Current Topics in Medicinal Chemistry, 2013, 13, 270-282.	2.1	74
26	Phosphatidylinositol 4,5-Bisphosphate (PIP2) Controls Magnesium Gatekeeper TRPM6 Activity. Biophysical Journal, 2012, 102, 24a.	0.5	1
27	Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovascular Research, 2011, 89, 744-753.	3.8	325
28	Phosphatidylinositol 4,5-bisphosphate (PIP2) controls magnesium gatekeeper TRPM6 activity. Scientific Reports, 2011, 1, 146.	3.3	78
29	Blockade of TRPM7 Channel Activity and Cell Death by Inhibitors of 5-Lipoxygenase. PLoS ONE, 2010, 5, e11161.	2.5	62
30	TRPM7-Mediated Ca ²⁺ Signals Confer Fibrogenesis in Human Atrial Fibrillation. Circulation Research, 2010, 106, 992-1003.	4.5	298
31	Specification of Region-Specific Neurons Including Forebrain Glutamatergic Neurons from Human Induced Pluripotent Stem Cells. PLoS ONE, 2010, 5, e11853.	2.5	180
32	TRPM7 Activates m-Calpain by Stress-Dependent Stimulation of p38 MAPK and c-Jun N-Terminal Kinase. Journal of Molecular Biology, 2010, 396, 858-869.	4.2	75
33	Intracellular calcium activates TRPM2 and its alternative spliced isoforms. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7239-7244.	7.1	150
34	Modulation of TRPM2 by acidic pH and the underlying mechanisms for pH sensitivity. Journal of General Physiology, 2009, 134, 471-488.	1.9	78
35	Molecular Determinants of Mg2+ and Ca2+ Permeability and pH Sensitivity in TRPM6 and TRPM7. Journal of Biological Chemistry, 2007, 282, 25817-25830.	3.4	162
36	TRPM7 Regulates Cell Adhesion by Controlling the Calcium-dependent Protease Calpain. Journal of Biological Chemistry, 2006, 281, 11260-11270.	3.4	209

#	Article	IF	CITATIONS
37	Functional Characterization of Homo- and Heteromeric Channel Kinases TRPM6 and TRPM7. Journal of General Physiology, 2006, 127, 525-537.	1.9	343
38	Potentiation of TRPM7 Inward Currents by Protons. Journal of General Physiology, 2005, 126, 137-150.	1.9	167
39	The Cation Selectivity Filter of the Bacterial Sodium Channel, NaChBac. Journal of General Physiology, 2002, 120, 845-853.	1.9	141
40	The TRPM7 channel is inactivated by PIP2 hydrolysis. Nature Cell Biology, 2002, 4, 329-336.	10.3	483
41	TRP-PLIK, a Bifunctional Protein with Kinase and Ion Channel Activities. Science, 2001, 291, 1043-1047.	12.6	680
42	CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature, 2001, 410, 705-709.	27.8	336