
Jin-Heong Yim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4099208/publications.pdf Version: 2024-02-01

IIN-HEONG YIM

#	Article	IF	CITATIONS
1	A multi-functional ammonia gas and strain sensor with 3D-printed thermoplastic polyurethane-polypyrrole composites. Polymer, 2022, 240, 124490.	3.8	13
2	Multifunctional supercapacitor integrated sensor from Oyster and Cicada derived bio-ternary composite: Vanillin/caffeine detections in beverages. Journal of Energy Storage, 2022, 45, 103791.	8.1	7
3	Effects of infill patterns on resistance-dependent strain and ammonia gas sensing behaviors of 3D-printed thermoplastic polyurethane modified with polypyrrole. Journal of Materials Chemistry C, 2022, 10, 6687-6695.	5.5	5
4	Electromechanically Durable Graphene Oxide-Embedded Elastomer via Simultaneous Corporation of Siloxane/Polyol Based on the Dual Secondary Bond Architecture. ACS Applied Polymer Materials, 2022, 4, 2614-2625.	4.4	2
5	Styrene-based ternary composite elastomers functionalized with graphene oxide-polypyrrole under iron(III)-alkyl benzenesulfonate oxidants for supercapacitor integrated strain sensor system. Journal of Energy Storage, 2022, 51, 104543.	8.1	6
6	Conformable on-skin supercapacitor-integrated, strain sensor based on multioxidant-functionalized thermoplastic polyurethane/reduced graphene oxide/polypyrrole composite films. New Journal of Chemistry, 2022, 46, 10535-10539.	2.8	3
7	A comparative study between vapor phase polymerized PPy and PEDOT - Thermoplastic polyurethane composites for ammonia sensing. Polymer, 2021, 217, 123463.	3.8	11
8	Effect of the Chemical Structure of the Oxidants on the Opto-electronic Properties of Polypyrrole Thin Film. Porrime, 2021, 45, 443-449.	0.2	2
9	Flexible, biocompatible, and electroconductive Polyurethane foam composites coated with graphene oxide for ammonia detection. Sensors and Actuators B: Chemical, 2021, 344, 130269.	7.8	20
10	Leakage free electrolyte engraved flexible supercapacitors from Chitosan/GO@MnCO3 polymer hydrogel chelate film under BMIMBF4 ionic liquid assistance Journal of Energy Storage, 2021, 43, 103300.	8.1	17
11	High temperature-functioning ceramic-based ionic liquid electrolyte engraved planar HAp/PVP/MnO ₂ @MnCO ₃ supercapacitors on carbon cloth. Journal of Materials Chemistry A, 2021, 9, 14319-14330.	10.3	18
12	Highly porous, soft, and flexible vapor-phase polymerized polypyrrole–styrene–ethylene–butylene–styrene hybrid scaffold as ammonia and strain sensor. RSC Advances, 2020, 10, 22533-22541.	3.6	12
13	Elucidation of the Controversial Layer Growth Mechanism of Vapor Phase Polymerization in the Preparation of Conductive Poly(3,4â€ethylenedioxythiophene)â€SiO 2 Hybrid Films. Advanced Materials Interfaces, 2020, 7, 2000046.	3.7	3
14	Mechanically and Electrically Enhanced Polyurethane-poly(3,4-ethylenedioxythiophene) Conductive Foams with Aligned Pore Structures Promote MC3T3-E1 Cell Growth and Proliferation. ACS Applied Polymer Materials, 2020, 2, 1482-1490.	4.4	5
15	Enhancement of Strainâ€5ensing Performance through Gas Phase Incorporation of Siloxane into Thermoplastic Polyurethaneâ€Conducting Polymer Composite. Macromolecular Chemistry and Physics, 2020, 221, 2000155.	2.2	6
16	A highly stretchable large strain sensor based on PEDOT–thermoplastic polyurethane hybrid prepared via in situ vapor phase polymerization. Journal of Industrial and Engineering Chemistry, 2019, 74, 108-117.	5.8	28
17	Fabrication of Three-dimensional Flexible Conductive Scaffold Using Spherical Sugar Particles as Porogen. Porrime, 2019, 43, 735-740.	0.2	1
18	Fabrication of an electroconductive, flexible, and soft poly(3,4-ethylenedioxythiophene)–thermoplastic polyurethane hybrid scaffold by <i>in situ</i> vapor phase polymerization. Journal of Materials Chemistry B, 2018, 6, 4082-4088.	5.8	16

Jin-Heong Yim

#	Article	IF	CITATIONS
19	Porous PEDOT–SiO2 hybrid conductive micro particles prepared by simultaneous co-vaporized vapor phase polymerization. Journal of Industrial and Engineering Chemistry, 2018, 63, 95-102.	5.8	5
20	Preparation of PEDOT-ordered mesoporous carbon hybrid material using vapor phase polymerization. Korean Journal of Chemical Engineering, 2018, 35, 1941-1947.	2.7	3
21	Preparation of graphene aerogel-poly(3,4-ethylenedioxythiophene) conductive composite by using simultaneous co-vaporized vapor phase polymerization. Korean Journal of Chemical Engineering, 2018, 35, 1756-1763.	2.7	0
22	Novel Preparation Route of Conductive PPy-PAN Hybrid Thin Films Using Simultaneous Co-vaporized Vapor Phase Polymerization. Porrime, 2018, 42, 701-707.	0.2	2
23	A conductive thin layer on prepared positive electrodes by vapour reaction printing for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 21214-21222.	10.3	23
24	In vitro biocompatibility of vapour phase polymerised conductive scaffolds for cell lines. Polymer, 2017, 124, 95-100.	3.8	24
25	Synergistic enhancement of electrical and mechanical properties of polypyrrole thin films by hybridization of SiO2 with vapor phase polymerization. Polymer, 2016, 93, 167-173.	3.8	12
26	Three-dimensional, high-porosity conducting skeletal structure from biodegradable microparticles with vapor-phase polymerized conformal surface layer. Polymer, 2016, 102, 127-135.	3.8	14
27	Influence of base inhibitor and surfactant on the electrical and physicochemical properties of PEDOT-SiO2 hybrid conductive films. Macromolecular Research, 2015, 23, 559-565.	2.4	14
28	A study on the physicochemical properties of a graphite/polybenzoxazine composite for bipolar plate of polymer electrolyte membrane fuel cells. Macromolecular Research, 2013, 21, 1226-1232.	2.4	10
29	Mechanically robust poly(3,4-ethylenedioxythiophene)–SiO2 hybrid conductive film prepared by simultaneous vapor phase polymerization. Composites Science and Technology, 2013, 86, 45-51.	7.8	23
30	Effects of hybrid hardener on properties of a composite bipolar plate for polymer electrolyte membrane fuel cells. Macromolecular Research, 2012, 20, 1124-1130.	2.4	2
31	Enhanced light harvesting in dye-sensitized solar cells with highly reflective TCO- and Pt-less counter electrodes. Journal of Materials Chemistry, 2011, 21, 15193.	6.7	18
32	Removal of Formaldehyde Over Amine Functionalized SBA-15. Journal of Nanoscience and Nanotechnology, 2011, 11, 1714-1717.	0.9	9
33	Simultaneous Vaporâ€Phase Polymerization of PEDOT and a Siloxane into Organic/Inorganic Hybrid Thin Films. Macromolecular Chemistry and Physics, 2011, 212, 521-530.	2.2	21
34	Cyclodextrin-modified MCM-41 for selective double bond migration. Research on Chemical Intermediates, 2010, 36, 661-667.	2.7	4
35	Micro-patterning of vapor-phase polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) using ink-jet printing/soft lithography. European Polymer Journal, 2010, 46, 389-396.	5.4	43
36	Chemical compositional distribution of ethylene-1-butene copolymer prepared with heterogeneous ziegler-natta catalyst: TREF and crystaf analysis. Macromolecular Research, 2009, 17, 296-300.	2.4	9

Jin-Heong Yim

#	Article	IF	CITATIONS
37	Catalytic degradation of polyethylene over ferrierite. Research on Chemical Intermediates, 2008, 34, 727-735.	2.7	11
38	The Preparation and Low-k Application of Asymmetric Functionalized Cyclodextrin Templated Nanoporous Silsesquioxane Films. Journal of Nanoscience and Nanotechnology, 2008, 8, 5408-5413.	0.9	0
39	A kinetic study of novel bimetallic titanocene catalyst for syndiospecific styrene polymerization. Journal of Applied Polymer Science, 2007, 105, 297-301.	2.6	1
40	Selective Synthesis of 1-butene through Positional Isomerisation of 2-butene over Mesoporous Silica MCM-41. Catalysis Letters, 2007, 119, 179-184.	2.6	23
41	Comparison of catalytic behaviors of various silica-supported metallocene catalysts in syndiospecific polymerization of styrene. Journal of Applied Polymer Science, 2006, 102, 2293-2298.	2.6	5
42	Calixarene Derivatives as Novel Nanopore Generators for Templates of Nanoporous Thin Films. Macromolecular Materials and Engineering, 2006, 291, 369-376.	3.6	6
43	Determining Pore Structure and Growth Mechanisms in Templated Nanoporous Low-k Films. Materials Research Society Symposia Proceedings, 2005, 863, B3.4-1.	0.1	1