Qiang He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4099083/publications.pdf

Version: 2024-02-01

14655 14,416 192 66 citations h-index papers

114 g-index 214 214 214 12331 docs citations times ranked citing authors all docs

21540

#	Article	IF	CITATIONS
1	Propulsion Mechanisms of Lightâ€Driven Plasmonic Colloidal Micromotors. Advanced Photonics Research, 2022, 3, 2100189.	3.6	10
2	Polymer-Based Swimming Nanorobots Driven by Chemical Fuels. , 2022, , 369-388.		3
3	Torqueâ€Driven Orientation Motion of Chemotactic Colloidal Motors. Angewandte Chemie - International Edition, 2022, 61, e202116013.	13.8	19
4	Reconfigurable assembly of colloidal motors towards interactive soft materials and systems. Journal of Colloid and Interface Science, 2022, 612, 43-56.	9.4	14
5	Torqueâ€Driven Orientation Motion of Chemotactic Colloidal Motors. Angewandte Chemie, 2022, 134, .	2.0	3
6	Upconversion-nanoparticle-functionalized Janus micromotors for efficient detection of uric acid. Journal of Materials Chemistry B, 2022, 10, 358-363.	5.8	14
7	Liquid Metal Swimming Nanorobots. Accounts of Materials Research, 2022, 3, 122-132.	11.7	18
8	Asymmetric colloidal motors: from dissymmetric nanoarchitectural fabrication to efficient propulsion strategy. Nanoscale, 2022, 14, 7444-7459.	5.6	5
9	Rational Design of Polymer Conical Nanoswimmers with Upstream Motility. ACS Nano, 2022, 16, 9317-9328.	14.6	7
10	Biosafety evaluation of dual-responsive neutrobots. Journal of Materials Chemistry B, 2022, 10, 7556-7562.	5.8	3
11	Biomedical Microâ€∕Nanomotors: From Overcoming Biological Barriers to In Vivo Imaging. Advanced Materials, 2021, 33, e2000512.	21.0	195
12	Near-infrared light propelled motion of needlelike liquid metal nanoswimmers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125865.	4.7	29
13	Poly(p-phenylene benzobisoxazole) nanofiber/reduced graphene oxide composite aerogels toward high-efficiency solar steam generation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 125997.	4.7	23
14	Bubbleâ€Propelled Janus Gallium/Zinc Micromotors for the Active Treatment of Bacterial Infections. Angewandte Chemie, 2021, 133, 8832-8836.	2.0	4
15	Dual-responsive biohybrid neutrobots for active target delivery. Science Robotics, 2021, 6, .	17.6	227
16	Bubbleâ€Propelled Janus Gallium/Zinc Micromotors for the Active Treatment of Bacterial Infections. Angewandte Chemie - International Edition, 2021, 60, 8750-8754.	13.8	115
17	Acousticallyâ€Propelled Rodlike Liquid Metal Colloidal Motors. ChemNanoMat, 2021, 7, 1025-1029.	2.8	9
18	Direct measurement of thermophoretic and photophoretic force acting on hot micromotors with optical tweezers. Applied Surface Science, 2021, 549, 149319.	6.1	14

#	Article	IF	CITATIONS
19	Recent progress on motion control of swimming micro/nanorobots. View, 2021, 2, 20200113.	5.3	25
20	Programmable Dynamic Shapes with a Swarm of Lightâ€Powered Colloidal Motors. Angewandte Chemie, 2021, 133, 16810-16815.	2.0	7
21	Programmable Dynamic Shapes with a Swarm of Lightâ€Powered Colloidal Motors. Angewandte Chemie - International Edition, 2021, 60, 16674-16679.	13.8	34
22	Autonomous Motion of Bubble-Powered Carbonaceous Nanoflask Motors. Langmuir, 2020, 36, 7039-7045.	3.5	33
23	Acoustophoretic Motion of Erythrocyteâ€mimicking Hemoglobin Micromotors. Chinese Journal of Chemistry, 2020, 38, 1589-1594.	4.9	7
24	Reconfigurable Assembly of Active Liquid Metal Colloidal Cluster. Angewandte Chemie - International Edition, 2020, 59, 19884-19888.	13.8	55
25	Swimming nanorobots for opening a cell membrane mechanically. View, 2020, 1, 20200005.	5.3	33
26	Reconfigurable Assembly of Active Liquid Metal Colloidal Cluster. Angewandte Chemie, 2020, 132, 20056-20060.	2.0	13
27	A case treated with Crizotinib after secondary MET amplification of A double Rare L747S and G719S EGFR mutation Pulmonary Sarcomatoid Carcinoma. Annals of Oncology, 2020, 31, 544-546.	1.2	8
28	Leukocyte Membrane-Coated Liquid Metal Nanoswimmers for Actively Targeted Delivery and Synergistic Chemophotothermal Therapy. Research, 2020, 2020, 3676954.	5.7	73
29	Liquid Metal Gallium Micromachines Speed Up in Confining Channels. Advanced Intelligent Systems, 2019, 1, 1900064.	6.1	11
30	Macroscale Chemotaxis from a Swarm of Bacteriaâ€Mimicking Nanoswimmers. Angewandte Chemie - International Edition, 2019, 58, 12200-12205.	13.8	85
31	Macroscale Chemotaxis from a Swarm of Bacteriaâ€Mimicking Nanoswimmers. Angewandte Chemie, 2019, 131, 12328-12333.	2.0	19
32	Janus-micromotor-based on–off luminescence sensor for active TNT detection. Beilstein Journal of Nanotechnology, 2019, 10, 1324-1331.	2.8	28
33	Surface Wettability-Directed Propulsion of Glucose-Powered Nanoflask Motors. ACS Nano, 2019, 13, 12758-12766.	14.6	63
34	Cancer Cell Membraneâ€Camouflaged Micromotor. Advanced Therapeutics, 2019, 2, 1900096.	3.2	33
35	Thermoresponsive Polymer Brush Modulation on the Direction of Motion of Phoretically Driven Janus Micromotors. Angewandte Chemie - International Edition, 2019, 58, 4184-4188.	13.8	76
36	Thermoresponsive Polymer Brush Modulation on the Direction of Motion of Phoretically Driven Janus Micromotors. Angewandte Chemie, 2019, 131, 4228-4232.	2.0	16

#	Article	IF	Citations
37	Magnetically-guided hydrogel capsule motors produced via ultrasound assisted hydrodynamic electrospray ionization jetting. Journal of Colloid and Interface Science, 2019, 541, 407-417.	9.4	34
38	Red Blood Cell-Mimicking Micromotor for Active Photodynamic Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23392-23400.	8.0	126
39	Programmable Generation and Motion Control of a Snakelike Magnetic Microrobot Swarm. IEEE/ASME Transactions on Mechatronics, 2019, 24, 902-912.	5.8	45
40	Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation. Science Robotics, 2019, 4, .	17.6	459
41	A Bubbleâ€Dragged Catalytic Polymer Microrocket. Chemistry - an Asian Journal, 2019, 14, 2460-2464.	3.3	12
42	Gold-Nanoshell-Functionalized Polymer Nanoswimmer for Photomechanical Poration of Single-Cell Membrane. Journal of the American Chemical Society, 2019, 141, 6601-6608.	13.7	118
43	Continuously Variable Regulation of the Speed of Bubbleâ€Propelled Janus Microcapsule Motors Based on Saltâ€Responsive Polyelectrolyte Brushes. Chemistry - an Asian Journal, 2019, 14, 2450-2455.	3.3	16
44	Magnetically-propelled hydrogel particle motors produced by ultrasound assisted hydrodynamic electrospray ionization jetting. Colloids and Surfaces B: Biointerfaces, 2019, 175, 44-55.	5.0	16
45	Poly(vinyl alcohol) hydrogels integrated with cuprous oxide–tannic acid submicroparticles for enhanced mechanical properties and synergetic antibiofouling. Journal of Colloid and Interface Science, 2019, 535, 491-498.	9.4	38
46	Plasmonic nanoparticle-embedded poly(<i>p</i> -phenylene benzobisoxazole) nanofibrous composite films for solar steam generation. Nanoscale, 2018, 10, 6186-6193.	5.6	143
47	Noncontinuous Superâ€Diffusive Dynamics of a Lightâ€Activated Nanobottle Motor. Angewandte Chemie - International Edition, 2018, 57, 6838-6842.	13.8	95
48	Noncontinuous Superâ€Diffusive Dynamics of a Lightâ€Activated Nanobottle Motor. Angewandte Chemie, 2018, 130, 6954-6958.	2.0	15
49	Automated Noncontact Micromanipulation Using Magnetic Swimming Microrobots. IEEE Nanotechnology Magazine, 2018, 17, 666-669.	2.0	40
50	Collective motion and dynamic self-assembly of colloid motors. Current Opinion in Colloid and Interface Science, 2018, 35, 51-58.	7.4	48
51	Magnetically Actuated Peanut Colloid Motors for Cell Manipulation and Patterning. ACS Nano, 2018, 12, 2539-2545.	14.6	153
52	Magnetically Actuated Rolling of Starâ€Shaped Hydrogel Microswimmer. Macromolecular Chemistry and Physics, 2018, 219, 1700540.	2.2	36
53	Selfâ€Propelled Rolledâ€Up Polyelectrolyte Multilayer Microrockets. Advanced Functional Materials, 2018, 28, 1705684.	14.9	46
54	An Automated Device for Layer-by-Layer Coating of Dispersed Superparamagnetic Nanoparticle Templates. Colloid Journal, 2018, 80, 648-659.	1.3	12

#	Article	IF	Citations
55	Shape-Transformable, Fusible Rodlike Swimming Liquid Metal Nanomachine. ACS Nano, 2018, 12, 10212-10220.	14.6	186
56	Bubble-Pair Propelled Colloidal Kayaker. Journal of the American Chemical Society, 2018, 140, 11902-11905.	13.7	47
57	"Zylon―Aerogels. Macromolecular Materials and Engineering, 2018, 303, 1800229.	3.6	11
58	Hydrodynamic electrospray ionization jetting of calcium alginate particles: effect of spray-mode, spraying distance and concentration. RSC Advances, 2018, 8, 24243-24249.	3.6	19
59	Cell Membrane–Camouflaged Colloid Motors for Biomedical Applications. Advanced Therapeutics, 2018, 1, 1800056.	3.2	46
60	Selfâ€Propelled Nanomotors for Thermomechanically Percolating Cell Membranes. Angewandte Chemie - International Edition, 2018, 57, 12463-12467.	13.8	173
61	Selfâ€Propelled Nanomotors for Thermomechanically Percolating Cell Membranes. Angewandte Chemie, 2018, 130, 12643-12647.	2.0	27
62	Elastic to Plastic Deformation in Uniaxially Stressed Polylelectrolyte Multilayer Films. Langmuir, 2018, 34, 11933-11942.	3.5	8
63	Bioinspired Platform Conjugated Active Drug Delivery. Current Drug Targets, 2018, 19, 328-338.	2.1	3
64	The hierarchical structure and mechanical performance of a natural nanocomposite material: The turtle shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 97-104.	4.7	15
65	Polyelectrolyte multilayer-cushioned fluid lipid bilayers: a parachute model. Physical Chemistry Chemical Physics, 2017, 19, 2008-2016.	2.8	19
66	Self-thermophoretic motion of controlled assembled micro-/nanomotors. Physical Chemistry Chemical Physics, 2017, 19, 23606-23613.	2.8	55
67	Forecastable and Guidable Bubbleâ€Propelled Microplate Motors for Cell Transport. Macromolecular Rapid Communications, 2017, 38, 1600795.	3.9	29
68	Formation Mechanism and Properties of Polyelectrolyte Multilayer-Supported Lipid Bilayers: A Coarse-Grained Molecular Dynamics Study. ACS Omega, 2017, 2, 910-917.	3.5	5
69	Lightâ€Activated Active Colloid Ribbons. Angewandte Chemie, 2017, 129, 13702-13705.	2.0	29
70	Controlled Molecular Assembly Toward Self-propelled Micro-/Nanomotors., 2017,, 259-281.		0
71	Lightâ€Activated Active Colloid Ribbons. Angewandte Chemie - International Edition, 2017, 56, 13517-13520.	13.8	87
72	Polybenzoxazole Nanofiber-Reinforced Moisture-Responsive Soft Actuators. Scientific Reports, 2017, 7, 769.	3.3	34

#	Article	IF	CITATIONS
73	Chemotaxisâ€Guided Hybrid Neutrophil Micromotors for Targeted Drug Transport. Angewandte Chemie - International Edition, 2017, 56, 12935-12939.	13.8	166
74	Chemotaxisâ€Guided Hybrid Neutrophil Micromotors for Targeted Drug Transport. Angewandte Chemie, 2017, 129, 13115-13119.	2.0	47
75	Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments. ACS Nano, 2017, 11, 9268-9275.	14.6	107
76	A Light-Activated Explosive Micropropeller. Scientific Reports, 2017, 7, 4621.	3.3	22
77	Controlled molecular assembly of self-propelled colloid motors and their biomedical applications. Scientia Sinica Chimica, 2017, 47, 3-13.	0.4	2
78	Stem Cell Membraneâ€Coated Nanogels for Highly Efficient In Vivo Tumor Targeted Drug Delivery. Small, 2016, 12, 4056-4062.	10.0	271
79	Selfâ€Propelled Microâ€∤Nanomotors Based on Controlled Assembled Architectures. Advanced Materials, 2016, 28, 1060-1072.	21.0	203
80	Superfast Nearâ€Infrared Lightâ€Driven Polymer Multilayer Rockets. Small, 2016, 12, 577-582.	10.0	168
81	Catalytic Polymer Multilayer Shell Motors for Separation of Organics. Chemistry - A European Journal, 2016, 22, 1587-1591.	3.3	26
82	Stem-Cell-Membrane Camouflaging on Near-Infrared Photoactivated Upconversion Nanoarchitectures for in Vivo Remote-Controlled Photodynamic Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 34252-34260.	8.0	132
83	Leucocyte Membrane-Coated Janus Microcapsules for Enhanced Photothermal Cancer Treatment. Langmuir, 2016, 32, 3637-3644.	3.5	68
84	Macrophage Cell Membrane Camouflaged Au Nanoshells for in Vivo Prolonged Circulation Life and Enhanced Cancer Photothermal Therapy. ACS Applied Materials & Enhanced Cancer Photothermal Therapy.	8.0	295
85	Near Infrared Light-Powered Janus Mesoporous Silica Nanoparticle Motors. Journal of the American Chemical Society, 2016, 138, 6492-6497.	13.7	385
86	Guidable Thermophoretic Janus Micromotors Containing Gold Nanocolorifiers for Infrared Laser Assisted Tissue Welding. Advanced Science, 2016, 3, 1600206.	11.2	115
87	Poly(p-phenylenebenzobisoxazole) nanofiber layered composite films with high thermomechanical performance. European Polymer Journal, 2016, 84, 622-630.	5.4	15
88	Guidable GNR-Fe 3 O 4 -PEM@SiO 2 composite particles containing near infrared active nanocalorifiers for laser assisted tissue welding. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511, 73-81.	4.7	20
89	Near-infrared light-driven Janus capsule motors: Fabrication, propulsion, and simulation. Nano Research, 2016, 9, 3747-3756.	10.4	96
90	Selfâ€Propulsion: Superfast Nearâ€Infrared Lightâ€Driven Polymer Multilayer Rockets (Small 5/2016). Small, 2016, 12, 550-550.	10.0	2

#	Article	IF	Citations
91	The collision phenomena of Janus polymer micro-plate motors propelled by oscillating micro-bubbles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 510, 113-121.	4.7	17
92	Recent Progress on Bioinspired Selfâ€Propelled Micro/Nanomotors via Controlled Molecular Selfâ€Assembly. Small, 2016, 12, 3080-3093.	10.0	125
93	Polymeric capsule-cushioned leukocyte cell membrane vesicles as a biomimetic delivery platform. Nanoscale, 2016, 8, 3548-3554.	5.6	63
94	How Leucocyte Cell Membrane Modified Janus Microcapsules are Phagocytosed by Cancer Cells. ACS Applied Materials & Diterfaces, 2016, 8, 4407-4415.	8.0	46
95	Self-propelled two dimensional polymer multilayer plate micromotors. Physical Chemistry Chemical Physics, 2016, 18, 3397-3401.	2.8	33
96	c-Abl–p38α signaling plays an important role in MPTP-induced neuronal death. Cell Death and Differentiation, 2016, 23, 542-552.	11.2	57
97	Effects of La-doping on charge separation behavior of ZnO:GaN for its enhanced photocatalytic performance. Catalysis Science and Technology, 2016, 6, 1033-1041.	4.1	13
98	Waterâ€Powered Cellâ€Mimicking Janus Micromotor. Advanced Functional Materials, 2015, 25, 7497-7501.	14.9	147
99	Nearâ€Infraredâ€Activated Nanocalorifiers in Microcapsules: Vapor Bubble Generation for Inâ€Vivo Enhanced Cancer Therapy. Angewandte Chemie - International Edition, 2015, 54, 12782-12787.	13.8	118
100	Remoteâ€Controllable Explosive Polymer Multilayer Tubes for Rapid Cancer Cell Killing. Macromolecular Rapid Communications, 2015, 36, 1444-1449.	3.9	33
101	Micro-contact printing of PEM thin films: effect of line tension and surface energies. RSC Advances, 2015, 5, 51891-51899.	3.6	21
102	Cellâ€Membraneâ€Coated Synthetic Nanomotors for Effective Biodetoxification. Advanced Functional Materials, 2015, 25, 3881-3887.	14.9	212
103	Biodegradable Protein-Based Rockets for Drug Transportation and Light-Triggered Release. ACS Applied Materials & Drug Transportation and Light-Triggered Release. ACS	8.0	208
104	RBC micromotors carrying multiple cargos towards potential theranostic applications. Nanoscale, 2015, 7, 13680-13686.	5.6	149
105	Photo-crosslinked natural polyelectrolyte multilayer capsules for drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 315-323.	4.7	18
106	Light-activated Janus self-assembled capsule micromotors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 92-97.	4.7	49
107	Macrophage Cell Membrane Camouflaged Mesoporous Silica Nanocapsules for In Vivo Cancer Therapy. Advanced Healthcare Materials, 2015, 4, 1645-1652.	7.6	259
108	Biointerfacing polymeric microcapsules for in vivo near-infrared light-triggered drug release. Nanoscale, 2015, 7, 19092-19098.	5.6	56

#	Article	lF	Citations
109	Microcontact printing of polyelectrolyte multilayer thin films: Glass–viscous flow transition based effects and hydration methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 483, 271-278.	4.7	12
110	Laser-induced fast fusion of gold nanoparticle-modified polyelectrolyte microcapsules. Physical Chemistry Chemical Physics, 2015, 17, 3281-3286.	2.8	21
111	Motionâ€Based, Highâ€Yielding, and Fast Separation of Different Charged Organics in Water. ChemPhysChem, 2015, 16, 147-151.	2.1	34
112	Near infrared-modulated propulsion of catalytic Janus polymer multilayer capsule motors. Chemical Communications, 2015, 51, 511-514.	4.1	57
113	Turning Erythrocytes into Functional Micromotors. ACS Nano, 2014, 8, 12041-12048.	14.6	247
114	Selfâ€Propelled Janus Mesoporous Silica Nanomotors with Subâ€100 nm Diameters for Drug Encapsulation and Delivery. ChemPhysChem, 2014, 15, 2255-2260.	2.1	155
115	Self-Propelled Polymer Multilayer Janus Capsules for Effective Drug Delivery and Light-Triggered Release. ACS Applied Materials & Samp; Interfaces, 2014, 6, 10476-10481.	8.0	208
116	Near-Infrared Light-Triggered "On/Off―Motion of Polymer Multilayer Rockets. ACS Nano, 2014, 8, 6097-6105.	14.6	221
117	Synthesis of GaN:ZnO solid solution photocatalysts with hollow polyhedral morphology through a molten-salt-assisted nitridation method. Materials Letters, 2014, 128, 319-321.	2.6	4
118	Influence of Polyelectrolyte Multilayer Coating on the Degree and Type of Biofouling in Freshwater Environment. Journal of Nanoscience and Nanotechnology, 2014, 14, 4341-4350.	0.9	30
119	Structure and Thermodynamics of Polyelectrolyte Complexes. Engineering Materials, 2014, , 19-86.	0.6	8
120	Selfâ€Propelled Polymerâ€Based Multilayer Nanorockets for Transportation and Drug Release. Angewandte Chemie - International Edition, 2013, 52, 7000-7003.	13.8	321
121	Novel controllable auxetic effect of linearly elongated supported polyelectrolyte multilayers with amorphous structure. Physical Chemistry Chemical Physics, 2013, 15, 483-488.	2.8	20
122	Effect of Linear Elongation of PDMS-Supported Polyelectrolyte Multilayer Determined by Attenuated Total Reflectance IR Radiation. Journal of Physical Chemistry B, 2013, 117, 2918-2925.	2.6	8
123	Complex polymer brush gradients based on nanolithography and surface-initiated polymerization. Chemical Society Reviews, 2012, 41, 3584.	38.1	70
124	Effect of Linear Elongation on Carbon Nanotube and Polyelectrolyte Structures in PDMS-Supported Nanocomposite LbL Films. Journal of Physical Chemistry B, 2012, 116, 12257-12262.	2.6	18
125	Orientation change of polyelectrolytes in linearly elongated polyelectrolyte multilayer measured by polarized UV spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 366-373.	4.7	17
126	Autonomous Movement of Controllable Assembled Janus Capsule Motors. ACS Nano, 2012, 6, 10910-10916.	14.6	214

#	Article	IF	CITATIONS
127	Interfacial Dispersion of Poly(<i>N</i> -isopropylacrylamide)/Gold Nanocomposites. Journal of Nanoscience and Nanotechnology, 2011, 11, 2052-2056.	0.9	11
128	Assembly of a Selfâ€Complementary Monomer: Formation of Supramolecular Polymer Networks and Responsive Gels. Chemistry - A European Journal, 2011, 17, 2435-2441.	3.3	93
129	Peptide Mesocrystals as Templates to Create an Au Surface with Stronger Surfaceâ€Enhanced Raman Spectroscopic Properties. Chemistry - A European Journal, 2011, 17, 3370-3375.	3.3	59
130	Selective Recognition of Coâ€assembled Thrombin Aptamer and Docetaxel on Mesoporous Silica Nanoparticles against Tumor Cell Proliferation. Chemistry - A European Journal, 2011, 17, 13170-13174.	3.3	45
131	A peony-flower-like hierarchical mesocrystal formed by diphenylalanine. Journal of Materials Chemistry, 2010, 20, 6734.	6.7	78
132	Hierarchical gold/copolymer nanostructures as hydrophobic nanotanks for drug encapsulation. Journal of Materials Chemistry, 2010, 20, 7782.	6.7	53
133	Nanoporous Template Synthesized Nanotubes for Bio-related Applications. Advanced Topics in Science and Technology in China, 2010, , 165-200.	0.1	0
134	Smart polyelectrolyte microcapsules as carriers for water-soluble small molecular drug. Journal of Controlled Release, 2009, 139, 160-166.	9.9	74
135	Layerâ€byâ€Layer Assembled Nanotubes as Biomimetic Nanoreactors for Calcium Carbonate Deposition. Macromolecular Rapid Communications, 2009, 30, 1538-1542.	3.9	23
136	Smart core/shell nanocomposites: Intelligent polymers modified gold nanoparticles. Advances in Colloid and Interface Science, 2009, 149, 28-38.	14.7	245
137	Self-assembly of composite nanotubes and their applications. Current Opinion in Colloid and Interface Science, 2009, 14, 115-125.	7.4	67
138	Proton Gradients Produced by Glucose Oxidase Microcapsules Containing Motor F _O F _I -ATPase for Continuous ATP Biosynthesis. Journal of Physical Chemistry B, 2009, 113, 395-399.	2.6	51
139	Assembled capsules transportation driven by motor proteins. Biochemical and Biophysical Research Communications, 2009, 379, 175-178.	2.1	23
140	Molecular assembly and application of biomimetic microcapsules. Chemical Society Reviews, 2009, 38, 2292.	38.1	190
141	Biointerfacing luminescent nanotubes. Soft Matter, 2009, 5, 300-303.	2.7	15
142	Selfâ€Assembly of Peptideâ€Based Colloids Containing Lipophilic Nanocrystals. Small, 2008, 4, 1687-1693.	10.0	67
143	Reversible Transitions between Peptide Nanotubes and Vesicleâ€Like Structures Including Theoretical Modeling Studies. Chemistry - A European Journal, 2008, 14, 5974-5980.	3.3	151
144	Controlled Preparation of MnO ₂ Hierarchical Hollow Nanostructures and Their Application in Water Treatment. Advanced Materials, 2008, 20, 452-456.	21.0	712

#	Article	IF	CITATIONS
145	Motor Protein CF ₀ F ₁ Reconstituted in Lipidâ€Coated Hemoglobin Microcapsules for ATP Synthesis. Advanced Materials, 2008, 20, 601-605.	21.0	83
146	Microcapsules Containing a Biomolecular Motor for ATP Biosynthesis. Advanced Materials, 2008, 20, 2933-2937.	21.0	58
147	Dynamic adsorption and characterization of phospholipid and mixed phospholipid/protein layers at liquid/liquid interfaces. Advances in Colloid and Interface Science, 2008, 140, 67-76.	14.7	62
148	Two-Stage pH Response of Poly(4-vinylpyridine) Grafted Gold Nanoparticles. Macromolecules, 2008, 41, 7254-7256.	4.8	144
149	Organogels Based on Self-Assembly of Diphenylalanine Peptide and Their Application To Immobilize Quantum Dots. Chemistry of Materials, 2008, 20, 1522-1526.	6.7	238
150	Preparation of polymer-coated mesoporous silica nanoparticles used for cellular imaging by a "graft-from―method. Journal of Materials Chemistry, 2008, 18, 5731.	6.7	132
151	Hydrothermal-Induced Structure Transformation of Polyelectrolyte Multilayers: From Nanotubes to Capsules. Langmuir, 2008, 24, 5508-5513.	3 . 5	51
152	Layer-by-layer assembly of magnetic polypeptide nanotubes as a DNA carrier. Journal of Materials Chemistry, 2008, 18, 748.	6.7	57
153	Fabrication of Mesoporous Titanium Oxide Nanotubes Based on Layer-by-Layer Assembly. Journal of Nanoscience and Nanotechnology, 2007, 7, 2534-2537.	0.9	11
154	Fabrication of Thermosensitive Polymer Nanopatterns through Chemical Lithography and Atom Transfer Radical Polymerization. Langmuir, 2007, 23, 3981-3987.	3. 5	72
155	Fabrication of Polystyrene/Gold Nanotubes and Nanostructure-Controlled Growthof Aluminate. Journal of Nanoscience and Nanotechnology, 2007, 7, 2361-2365.	0.9	2
156	Enhanced Dispersity of Gold Nanoparticles Modified by < > %< l>-Carboxyl Alkanethiols Under the Impact of Poly(ethylene glycol)s. Journal of Nanoscience and Nanotechnology, 2007, 7, 3089-3094.	0.9	13
157	Hemoglobin protein hollow shells fabricated through covalent layer-by-layer technique. Biochemical and Biophysical Research Communications, 2007, 354, 357-362.	2.1	94
158	Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability. Biochemical and Biophysical Research Communications, 2007, 355, 488-493.	2.1	149
159	Glycolipid patterns supported by human serum albumin for E. coli recognition. Biochemical and Biophysical Research Communications, 2007, 358, 424-428.	2.1	9
160	Encapsulated photosensitive drugs by biodegradable microcapsules to incapacitate cancer cells. Journal of Materials Chemistry, 2007, 17, 4018.	6.7	99
161	Fabrication of pH-Responsive Nanocomposites of Gold Nanoparticles/Poly(4-vinylpyridine). Chemistry of Materials, 2007, 19, 412-417.	6.7	232
162	Synthesis and <i>in vitro</i> Behavior of Multivalent Cationic Lipopeptide for DNA Delivery and Release in HeLa Cells. Bioconjugate Chemistry, 2007, 18, 1735-1738.	3.6	23

#	Article	IF	Citations
163	Thermosensitive Copolymer Networks Modify Gold Nanoparticles for Nanocomposite Entrapment. Chemistry - A European Journal, 2007, 13, 2224-2229.	3.3	121
164	Transition of Cationic Dipeptide Nanotubes into Vesicles and Oligonucleotide Delivery. Angewandte Chemie - International Edition, 2007, 46, 2431-2434.	13.8	306
165	Adenosine Triphosphate Biosynthesis Catalyzed by F _o F ₁ ATP Synthase Assembled in Polymer Microcapsules. Angewandte Chemie - International Edition, 2007, 46, 6996-7000.	13.8	77
166	Adenosine Triphosphate Biosynthesis Catalyzed by F _o F ₁ ATP Synthase Assembled in Polymer Microcapsules. Angewandte Chemie, 2007, 119, 7126-7130.	2.0	21
167	Thermosensitive Nanostructures Comprising Gold Nanoparticles Grafted with Block Copolymers. Advanced Functional Materials, 2007, 17, 3134-3140.	14.9	171
168	Hydrolysis characterization of phospholipid monolayers catalyzed by different phospholipases at the airâ€"water interface. Advances in Colloid and Interface Science, 2007, 131, 91-98.	14.7	32
169	Fabrication of Controlled Thermosensitive Polymer Nanopatterns with Oneâ€Pot Polymerization Through Chemical Lithography. Small, 2007, 3, 1860-1865.	10.0	58
170	Assembled alginate/chitosan nanotubes for biological application. Biomaterials, 2007, 28, 3083-3090.	11.4	130
171	Fabrication of Protein Nanotubes Based on Layer-by-Layer Assembly. Biomacromolecules, 2006, 7, 2539-2542.	5.4	88
172	Fabrication of Fluorescent Nanotubes Based on Layer-by-Layer Assembly via Covalent Bond. Langmuir, 2006, 22, 360-362.	3.5	78
173	Synthesis of PNIPAM-co-MBAA Copolymer Nanotubes with Composite Control. Langmuir, 2006, 22, 8205-8208.	3.5	36
174	Human serum albumin supported lipid patterns for the targeted recognition of microspheres coated by membrane based on ss-DNA hybridization. Biochemical and Biophysical Research Communications, 2006, 349, 920-924.	2.1	13
175	Fabrication of Polyethyleneimine and Poly(styrene- <i>alt</i> -maleic anhydride) Nanotubes Through Covalent Bond. Journal of Nanoscience and Nanotechnology, 2006, 6, 2072-2076.	0.9	20
176	Nanorods assembly of polystyrene under theta condition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 275, 218-220.	4.7	6
177	Assembly of Nanotubes of Poly(4-vinylpyridine) and Poly(acrylic acid) through Hydrogen Bonding. Chemistry - A European Journal, 2006, 12, 4808-4812.	3.3	59
178	A Hole-Transporting Material with Controllable Morphology Containing Binaphthyl and Triphenylamine Chromophores. Advanced Functional Materials, 2006, 16, 1343-1348.	14.9	47
179	Self-Assembled Molecular Pattern by Chemical Lithography and Interfacial Chemical Reactions. Journal of Nanoscience and Nanotechnology, 2006, 6, 1838-1841.	0.9	9
180	Comparative investigation of structure characteristics of mixed \hat{l}^2 -lactoglobulin and different chain-length phophatidylcholine monolayer at the air/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258, 127-131.	4.7	7

#	Article	IF	Citations
181	Synthesis of Thermosensitive PNIPAM-co-MBAA Nanotubes by Atom Transfer Radical Polymerization within a Porous Membrane. Macromolecular Rapid Communications, 2005, 26, 1552-1556.	3.9	64
182	Conductive Polypyrrole and Poly(allylamine hydrochloride) Nanotubes Fabricated with Layer-by-Layer Assembly. Macromolecular Rapid Communications, 2005, 26, 1965-1969.	3.9	32
183	Hydrolysis Reaction Analysis ofl-α-Distearoylphosphatidylcholine Monolayer Catalyzed by Phospholipase A2with Polarization-Modulated Infrared Reflection Absorption Spectroscopy. Langmuir, 2005, 21, 1051-1054.	3.5	23
184	Structural Changes of Phospholipid Monolayers Caused by Coupling of Human Serum Albumin:  A GIXD Study at the Air/Water Interface. Journal of Physical Chemistry B, 2004, 108, 14171-14177.	2.6	35
185	Self-assembly and Characterization of Polypyrrole and Polyallylamine Multilayer Films and Hollow Shells. Chemistry of Materials, 2004, 16, 3677-3681.	6.7	34
186	Direct Visualization of the Dynamic Hydrolysis Process of anl-DPPC Monolayer Catalyzed by Phospholipase D at the Air/Water Interface. Journal of Physical Chemistry B, 2004, 108, 473-476.	2.6	17
187	Self-Organization of an L-Ether-amide Phospholipid in Large Two-Dimensional Chiral Crystals. ChemPhysChem, 2003, 4, 1355-1358.	2.1	7
188	Direct Observations of the Cleavage Reaction of an L-DPPC Monolayer Catalyzed by Phospholipase A2 and Inhibited by an Indole Inhibitor at the Air/Water Interface. ChemBioChem, 2003, 4, 299-305.	2.6	19
189	Highly Flexible Polyelectrolyte Nanotubes. Journal of the American Chemical Society, 2003, 125, 11140-11141.	13.7	234
190	Dynamic and morphological investigation of phospholipid monolayer hydrolysis by phospholipase C. Biochemical and Biophysical Research Communications, 2003, 300, 541-545.	2.1	19
191	Oxidation of Methanol Catalyzed by Silica-supported Polystannazane - Copper Complex. Polymers for Advanced Technologies, 1996, 7, 73-75.	3.2	0
192	Catalytic behavior of a silica-supported polystannazane-copper complex for the oxidation of methanol to formaldehyde at mild reaction conditions. Macromolecular Rapid Communications, 1995, 16, 15-18.	3.9	4