Fazal Rahim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/409904/publications.pdf

Version: 2024-02-01

145 papers 4,970 citations

43 h-index 61 g-index

148 all docs 148 docs citations

148 times ranked 3104 citing authors

#	Article	IF	CITATIONS
1	Synthesis, <i>inÂvitro </i> biological screening and docking study of benzo [<i>d</i>) as a potent anti-Alzheimer agent. Journal of Biomolecular Structure and Dynamics, 2023, 41, 1649-1664.	3.5	9
2	Synthesis of new urease enzyme inhibitors as antiulcer drug and computational study. Journal of Biomolecular Structure and Dynamics, 2022, 40, 8232-8247.	3.5	3
3	Synthesis, in vitro thymidine phosphorylase activity and molecular docking study of thiadiazole bearing isatin analogs. Chemical Papers, 2022, 76, 213-224.	2.2	10
4	Synthesis of new 1,2-disubstituted benzimidazole analogs as potent inhibitors of \hat{l}^2 -Glucuronidase and in silico study. Arabian Journal of Chemistry, 2022, 15, 103505.	4.9	5
5	In vitro α-glucosidase and α-amylase inhibitory potential and molecular docking studies of benzohydrazide based imines and thiazolidine-4-one derivatives. Journal of Molecular Structure, 2022, 1251, 132058.	3.6	34
6	New biologically dynamic hybrid pharmacophore triazinoindole-based-thiadiazole as potent $\hat{l}\pm$ -glucosidase inhibitors: In vitro and in silico study. International Journal of Biological Macromolecules, 2022, 199, 77-85.	7.5	12
7	Dicyanoanilines as potential and dual inhibitors of \hat{l} ±-amylase and \hat{l} ±-glucosidase enzymes: Synthesis, characterization, in vitro, in silico, and kinetics studies. Arabian Journal of Chemistry, 2022, 15, 103651.	4.9	14
8	Synthesis of indole-based oxadiazoles and their interaction with bacterial peptidoglycan and SARS-CoV-2 main protease: In vitro, molecular docking and in silico ADME/Tox study. Journal of Saudi Chemical Society, 2022, 26, 101474.	5.2	5
9	Synthesis, in vitro evaluation, and molecular docking studies of benzofuran based hydrazone a new inhibitors of urease. Arabian Journal of Chemistry, 2022, 15, 103954.	4.9	2
10	Synthesis of triazinoindole bearing sulfonamide derivatives, in vitro α-amylase activity and their molecular docking study. Chemical Data Collections, 2022, 39, 100875.	2.3	11
11	Synthesis of Benzofuran–based Schiff bases as anti-diabetic compounds and their molecular docking studies. Journal of Molecular Structure, 2022, 1265, 133287.	3.6	2
12	Synthesis and Evaluation of 6â€Ethoxyâ€2â€mercaptobenzothiazole Scaffolds as Potential <i>α</i> â€Glucosidase Inhibitors. ChemistrySelect, 2022, 7, .	1.5	O
13	Homozygous missense <i>WIPI2</i> variants cause a congenital disorder of autophagy with neurodevelopmental impairments of variable clinical severity and disease course. Brain Communications, 2021, 3, fcab183.	3.3	10
14	Synthesis of indole-based-thiadiazole derivatives as a potent inhibitor of \hat{l}_{\pm} -glucosidase enzyme along with in silico study. Bioorganic Chemistry, 2021, 108, 104638.	4.1	32
15	Evaluation and docking of indole sulfonamide as a potent inhibitor of α-glucosidase enzyme in streptozotocin –induced diabetic albino wistar rats. Bioorganic Chemistry, 2021, 110, 104808.	4.1	20
16	Synthesis of benzimidazole derivatives as potent inhibitors for α-amylase and their molecular docking study in management of type-II diabetes. Journal of Molecular Structure, 2021, 1232, 130029.	3.6	19
17	Synthesis, characterization, biological evaluation, and kinetic study of indole base sulfonamide derivatives as acetylcholinesterase inhibitors in search of potent anti-Alzheimer agent. Journal of King Saud University - Science, 2021, 33, 101401.	3.5	19
18	2â€Mercapto Benzoxazole Derivatives as Novel Leads: Urease Inhibition, In Vitro and In Silico Studies. ChemistrySelect, 2021, 6, 8490-8498.	1.5	2

#	Article	IF	Citations
19	Synthesis, in vitro antiurease, in vivo antinematodal activity of quinoline analogs and their in-silico study. Bioorganic Chemistry, 2021, 115, 105199.	4.1	7
20	Exploring indole-based-thiadiazole derivatives as potent acetylcholinesterase and butyrylcholinesterase enzyme inhibitors. International Journal of Biological Macromolecules, 2021, 188, 1025-1036.	7. 5	20
21	Synthesis of indole derivatives as diabetics II inhibitors and enzymatic kinetics study of $\hat{l}\pm$ -glucosidase and $\hat{l}\pm$ -amylase along with their in-silico study. International Journal of Biological Macromolecules, 2021, 190, 301-318.	7.5	23
22	Synthesis, in-vitro and in-silico studies of triazinoindole bearing bis-Schiff base as \hat{l}^2 -glucuronidase inhibitors. Journal of Molecular Structure, 2021, 1244, 131003.	3.6	25
23	Synthesis of substituted benzohydrazide derivatives: In vitro urease activities and their molecular docking studies. Chemical Data Collections, 2021, 36, 100778.	2.3	15
24	Synthesis, antiglycation and antioxidant potentials of benzimidazole derivatives. Journal of King Saud University - Science, 2020, 32, 191-194.	3.5	25
25	Synthesis, in vitro alpha-glucosidase inhibitory potential of benzimidazole bearing bis-Schiff bases and their molecular docking study. Bioorganic Chemistry, 2020, 94, 103394.	4.1	51
26	Synthesis, \hat{l} ±-glycosidase inhibitory potential and molecular docking study of benzimidazole derivatives. Bioorganic Chemistry, 2020, 95, 103555.	4.1	32
27	Synthesis of Benzimidazole–Based Analogs as Anti Alzheimer's Disease Compounds and Their Molecular Docking Studies. Molecules, 2020, 25, 4828.	3.8	23
28	Isatin based thiosemicarbazide derivatives as potential inhibitor of î±-glucosidase, synthesis and their molecular docking study. Journal of Molecular Structure, 2020, 1222, 128922.	3.6	25
29	Synthesis, in vitro urease inhibitory potential and molecular docking study of benzofuran-based-thiazoldinone analogues. Scientific Reports, 2020, 10, 10673.	3.3	33
30	Synthesis, in vitro alpha glucosidase, urease activities and molecular docking study of bis-indole bearing Schiff base analogs. Chemical Data Collections, 2020, 28, 100396.	2.3	29
31	Synthesis of diindolylmethane (DIM) bearing thiadiazole derivatives as a potent urease inhibitor. Scientific Reports, 2020, 10, 7969.	3.3	13
32	Inhibition potential of phenyl linked benzimidazole-triazolothiadiazole modular hybrids against \hat{I}^2 -glucuronidase and their interactions thereof. International Journal of Biological Macromolecules, 2020, 161, 355-363.	7. 5	9
33	Exploring efficacy of indole-based dual inhibitors for α-glucosidase and α-amylase enzymes: In silico, biochemical and kinetic studies. International Journal of Biological Macromolecules, 2020, 154, 217-232.	7.5	26
34	Synthesis of indole based acetohydrazide analogs: Their in vitro and in silico thymidine phosphorylase studies. Bioorganic Chemistry, 2020, 98, 103745.	4.1	11
35	Aryl-oxadiazole Schiff bases: Synthesis, \hat{l} ±-glucosidase in vitro inhibitory activity and their in silico studies. Arabian Journal of Chemistry, 2020, 13, 4904-4915.	4.9	27
36	Synthesis of symmetrical bis-Schiff base-disulfide hybrids as highly effective anti-leishmanial agents. Bioorganic Chemistry, 2020, 99, 103819.	4.1	6

#	Article	IF	CITATIONS
37	Synthesis, In vitro α-Glucosidase Inhibitory Potential and Molecular Docking Studies of 2-Amino-1,3,4-Oxadiazole Derivatives. Medicinal Chemistry, 2020, 16, 724-734.	1.5	31
38	Synthesis, anti-leishmanial and molecular docking study of bis-indole derivatives. BMC Chemistry, 2019, 13, 102.	3.8	18
39	Synthesis, anticancer, molecular docking and QSAR studies of benzoylhydrazone. Journal of Saudi Chemical Society, 2019, 23, 1168-1179.	5.2	11
40	Synthesis of quinoline derivatives as diabetic II inhibitors and molecular docking studies. Bioorganic and Medicinal Chemistry, 2019, 27, 4081-4088.	3.0	45
41	Synthesis of new arylhydrazide bearing Schiff bases/thiazolidinone: \hat{l}_{\pm} -Amylase, urease activities and their molecular docking studies. Bioorganic Chemistry, 2019, 91, 103112.	4.1	33
42	Design, synthesis, in vitro evaluation, molecular docking and ADME properties studies of hybrid bis-coumarin with thiadiazole as a new inhibitor of Urease. Bioorganic Chemistry, 2019, 92, 103235.	4.1	20
43	Synthesis of new isoquinoline-base-oxadiazole derivatives as potent inhibitors of thymidine phosphorylase and molecular docking study. Scientific Reports, 2019, 9, 16015.	3.3	9
44	Synthesis of Novel Triazinoindole-Based Thiourea Hybrid: A Study on \hat{l}_{\pm} -Glucosidase Inhibitors and Their Molecular Docking. Molecules, 2019, 24, 3819.	3.8	18
45	Synthesis, $\hat{l}\pm$ -amylase inhibition and molecular docking study of bisindolylmethane sulfonamide derivatives. Medicinal Chemistry Research, 2019, 28, 2010-2022.	2.4	14
46	New triazinoindole bearing thiazole/oxazole analogues: Synthesis, \hat{l}_{\pm} -amylase inhibitory potential and molecular docking study. Bioorganic Chemistry, 2019, 92, 103284.	4.1	38
47	Synthesis, thymidine phosphorylase, angiogenic inhibition and molecular docking study of isoquinoline derivatives. Bioorganic Chemistry, 2019, 89, 102999.	4.1	8
48	Synthesis, in vitro urease inhibitory potential and molecular docking study of Benzimidazole analogues. Bioorganic Chemistry, 2019, 89, 103024.	4.1	45
49	Synthesis of oxadiazole-coupled-thiadiazole derivatives as a potent \hat{l}^2 -glucuronidase inhibitors and their molecular docking study. Bioorganic and Medicinal Chemistry, 2019, 27, 3145-3155.	3.0	13
50	Synthesis of Chromen-4-One-Oxadiazole Substituted Analogs as Potent β-Glucuronidase Inhibitors. Molecules, 2019, 24, 1528.	3.8	5
51	Synthesis, Molecular Docking and \hat{l}^2 -Glucuronidase Inhibitory Potential of Indole Base Oxadiazole Derivatives. Molecules, 2019, 24, 963.	3.8	17
52	A mutation in the major autophagy gene, WIPI2, associated with global developmental abnormalities. Brain, 2019, 142, 1242-1254.	7.6	28
53	Synthesis of Thymidine Phosphorylase Inhibitor Based on Quinoxaline Derivatives and Their Molecular Docking Study. Molecules, 2019, 24, 1002.	3.8	9
54	Thiazole Based Carbohydrazide Derivatives as \hat{l} ±-Amylase Inhibitor and Their Molecular Docking Study. Heteroatom Chemistry, 2019, 2019, 1-8.	0.7	19

#	Article	IF	CITATIONS
55	Indole bearing thiadiazole analogs: synthesis, \hat{l}^2 -glucuronidase inhibition and molecular docking study. BMC Chemistry, 2019, 13, 14.	3.8	10
56	Synthesis of benzothiazole derivatives as a potent α-glucosidase inhibitor. Bioorganic Chemistry, 2019, 85, 33-48.	4.1	54
57	Synthesis of novel quinoline-based thiadiazole, evaluation of their antileishmanial potential and molecular docking studies. Bioorganic Chemistry, 2019, 85, 109-116.	4.1	25
58	Synthesis, molecular docking study and thymidine phosphorylase inhibitory activity of 3-formylcoumarin derivatives. Bioorganic Chemistry, 2018, 78, 17-23.	4.1	15
59	Synthesis, molecular docking study and in vitro thymidine phosphorylase inhibitory potential of oxadiazole derivatives. Bioorganic Chemistry, 2018, 78, 58-67.	4.1	33
60	Synthesis, \hat{l} ±-glucosidase inhibition and molecular docking study of coumarin based derivatives. Bioorganic Chemistry, 2018, 77, 586-592.	4.1	88
61	Synthesis: Small library of hybrid scaffolds of benzothiazole having hydrazone and evaluation of their \hat{l}^2 -glucuronidase activity. Bioorganic Chemistry, 2018, 77, 47-55.	4.1	14
62	Synthesis and molecular docking study of piperazine derivatives as potent inhibitor of thymidine phosphorylase. Bioorganic Chemistry, 2018, 78, 324-331.	4.1	15
63	Synthesis, in vitro α-glucosidase inhibitory potential and molecular docking study of thiadiazole analogs. Bioorganic Chemistry, 2018, 78, 201-209.	4.1	65
64	Synthesis of bis-indolylmethanes as new potential inhibitors of \hat{l}^2 -glucuronidase and their molecular docking studies. European Journal of Medicinal Chemistry, 2018, 143, 1757-1767.	5.5	65
65	Bisindolylmethane thiosemicarbazides as potential inhibitors of urease: Synthesis and molecular modeling studies. Bioorganic and Medicinal Chemistry, 2018, 26, 152-160.	3.0	59
66	Oxindole based oxadiazole hybrid analogs: Novel α -glucosidase inhibitors. Bioorganic Chemistry, 2018, 76, 273-280.	4.1	53
67	Synthesis, \hat{l}_{\pm} -amylase inhibitory potential and molecular docking study of indole derivatives. Bioorganic Chemistry, 2018, 80, 36-42.	4.1	50
68	Synthesis, SAR elucidations and molecular docking study of newly designed isatin based oxadiazole analogs as potent inhibitors of thymidine phosphorylase. Bioorganic Chemistry, 2018, 79, 323-333.	4.1	20
69	Synthesis of Bis-indolylmethane sulfonohydrazides derivatives as potent α-Glucosidase inhibitors. Bioorganic Chemistry, 2018, 80, 112-120.	4.1	49
70	Synthesis, structure-activity relationships studies of benzoxazinone derivatives as \hat{l}_{\pm} -chymotrypsin inhibitors. Bioorganic Chemistry, 2017, 70, 210-221.	4.1	18
71	Synthesis of alpha amylase inhibitors based on privileged indole scaffold. Bioorganic Chemistry, 2017, 72, 248-255.	4.1	75
72	Synthesis of indole analogs as potent \hat{l}^2 -glucuronidase inhibitors. Bioorganic Chemistry, 2017, 72, 323-332.	4.1	20

#	Article	IF	Citations
73	Synthesis, Characterization and Antibacterial Screening of Diorganotin(IV) Complexes Derived From 2-[(4-Dimethylamino-Benzylidene)Amino]Phenol. Pharmaceutical Chemistry Journal, 2017, 51, 115-118.	0.8	5
74	Biological properties of Hertia cheirifolia L. flower extracts and effect of the nopol on î±-glucosidase. International Journal of Biological Macromolecules, 2017, 95, 757-761.	7.5	11
75	Synthesis, molecular docking studies of hybrid benzimidazole as $\hat{l}\pm$ -glucosidase inhibitor. Bioorganic Chemistry, 2017, 70, 184-191.	4.1	40
76	Synthesis and molecular modelling studies of phenyl linked oxadiazole-phenylhydrazone hybrids as potent antileishmanial agents. European Journal of Medicinal Chemistry, 2017, 126, 1021-1033.	5 . 5	34
77	Synthesis of piperazine sulfonamide analogs as diabetic-II inhibitors and their molecular docking study. European Journal of Medicinal Chemistry, 2017, 141, 530-537.	5.5	37
78	3,4-Dimethoxybenzohydrazide derivatives as antiulcer: Molecular modeling and density functional studies. Bioorganic Chemistry, 2017, 75, 235-241.	4.1	7
79	Synthesis and in vitro study of benzofuran hydrazone derivatives as novel alpha-amylase inhibitor. Bioorganic Chemistry, 2017, 75, 78-85.	4.1	24
80	Synthesis, \hat{l}_{\pm} -glucosidase inhibitory activity and in silico study of tris -indole hybrid scaffold with oxadiazole ring: As potential leads for the management of type-II diabetes mellitus. Bioorganic Chemistry, 2017, 74, 30-40.	4.1	72
81	Synthesis of Hydrazones from Amino Acids and their Antimicrobial and Cytotoxic Activities. Journal of the Chinese Chemical Society, 2017, 64, 1079-1087.	1.4	0
82	Synthesis and study of the $\hat{l}\pm$ -amylase inhibitory potential of thiadiazole quinoline derivatives. Bioorganic Chemistry, 2017, 74, 179-186.	4.1	80
83	Biology-oriented drug synthesis (BIODS) of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives, in vitro α-amylase inhibitory activity and in silico studies. Bioorganic Chemistry, 2017, 74, 1-9.	4.1	75
84	Morpholine hydrazone scaffold: Synthesis, anticancer activity and docking studies. Chinese Chemical Letters, 2017, 28, 607-611.	9.0	18
85	Polymer-clay Nanocomposites, Preparations and Current Applications: A Review. Current Nanomaterials, 2016, 1, 83-95.	0.4	24
86	Synthesis of novel disulfide and sulfone hybrid scaffolds as potent \hat{l}^2 -glucuronidase inhibitor. Bioorganic Chemistry, 2016, 68, 15-22.	4.1	10
87	Synthesis, <i>In vitro</i> and Docking Studies of New Flavone Ethers as <i>α</i> â€Glucosidase Inhibitors. Chemical Biology and Drug Design, 2016, 87, 361-373.	3.2	63
88	Synthesis, molecular docking and α-glucosidase inhibition of 5-aryl-2-(6′-nitrobenzofuran-2′-yl)-1,3,4-oxadiazoles. Bioorganic Chemistry, 2016, 66, 117-123.	4.1	71
89	Synthesis of 2-acylated and sulfonated 4-hydroxycoumarins: In vitro urease inhibition and molecular docking studies. Bioorganic Chemistry, 2016, 66, 111-116.	4.1	60
90	Synthesis, \hat{l}^2 -glucuronidase inhibition and molecular docking studies of hybrid bisindole-thiosemicarbazides analogs. Bioorganic Chemistry, 2016, 68, 56-63.	4.1	66

#	Article	IF	Citations
91	In silico binding analysis and SAR elucidations of newly designed benzopyrazine analogs as potent inhibitors of thymidine phosphorylase. Bioorganic Chemistry, 2016, 68, 80-89.	4.1	12
92	Synthesis biological screening and molecular docking studies of some tin (IV) Schiff base adducts. Journal of Photochemistry and Photobiology B: Biology, 2016, 164, 65-72.	3.8	32
93	Synthesis and in vitro acetylcholinesterase and butyrylcholinesterase inhibitory potential of hydrazide based Schiff bases. Bioorganic Chemistry, 2016, 68, 30-40.	4.1	82
94	Synthesis, Enzyme Inhibition, and Molecular Docking Studies of Hydrazones from Dichlorophenylacetic Acids. Journal of the Chinese Chemical Society, 2016, 63, 1015-1021.	1.4	2
95	Synthesis and biological evaluation of novel N-arylidenequinoline-3-carbohydrazides as potent \hat{l}^2 -glucuronidase inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 3696-3704.	3.0	58
96	Development of bis-thiobarbiturates as successful urease inhibitors and their molecular modeling studies. Chinese Chemical Letters, 2016, 27, 693-697.	9.0	53
97	Novel thiosemicarbazide–oxadiazole hybrids as unprecedented inhibitors of yeast α-glucosidase and in silico binding analysis. RSC Advances, 2016, 6, 33733-33742.	3.6	49
98	Hybrid benzothiazole analogs as antiurease agent: Synthesis and molecular docking studies. Bioorganic Chemistry, 2016, 66, 80-87.	4.1	51
99	Synthesis, \hat{l}_{\pm} -glucosidase inhibitory, cytotoxicity and docking studies of 2-aryl-7-methylbenzimidazoles. Bioorganic Chemistry, 2016, 65, 100-109.	4.1	47
100	Synthesis of 6-chloro-2-Aryl-1H-imidazo [4,5-b] pyridine derivatives: Antidiabetic, antioxidant, \hat{l}^2 -glucuronidase inhibiton and their molecular docking studies. Bioorganic Chemistry, 2016, 65, 48-56.	4.1	45
101	Synthesis of novel inhibitors of \hat{l}^2 -glucuronidase based on the benzothiazole skeleton and their molecular docking studies. RSC Advances, 2016, 6, 3003-3012.	3.6	46
102	Synthesis of 2-(2-methoxyphenyl)-5-phenyl-1,3,4-oxadiazole derivatives and evaluation of their antiglycation potential. Medicinal Chemistry Research, 2016, 25, 225-234.	2.4	20
103	The immunomodulation potential of the synthetic derivatives of benzothiazoles: Implications in immune system disorders through in vitro and in silico studies. Bioorganic Chemistry, 2016, 64, 21-28.	4.1	28
104	Benzimidazole derivatives as new \hat{l}_{\pm} -glucosidase inhibitors and in silico studies. Bioorganic Chemistry, 2016, 64, 29-36.	4.1	75
105	Sulfonated Polyimide-Clay Thin Films for Energy Application. Recent Patents on Nanotechnology, 2016, 10, 221-230.	1.3	10
106	Whole-exome sequencing identifies a novel LRAT mutation underlying retinitis punctata albescens in a consanguineous Pakistani family. Genes and Genomics, 2015, 37, 845-849.	1.4	3
107	Synthesis of benzimidazole derivatives as potent \hat{l}^2 -glucuronidase inhibitors. Bioorganic Chemistry, 2015, 61, 36-44.	4.1	48
108	Synthesis of novel derivatives of oxindole, their urease inhibition and molecular docking studies. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3285-3289.	2.2	79

#	Article	IF	CITATIONS
109	Synthesis, structural characterization and antibacterial studies of trisubstituted guanidines and their copper(II) complexes. Inorganica Chimica Acta, 2015, 434, 7-13.	2.4	10
110	Novel quinoline derivatives as potent in vitro α-glucosidase inhibitors: in silico studies and SAR predictions. MedChemComm, 2015, 6, 1826-1836.	3.4	58
111	Synthesis, in vitro evaluation and molecular docking studies of thiazole derivatives as new inhibitors of α-glucosidase. Bioorganic Chemistry, 2015, 62, 15-21.	4.1	109
112	Isatin based Schiff bases as inhibitors of \hat{l}_{\pm} -glucosidase: Synthesis, characterization, in vitro evaluation and molecular docking studies. Bioorganic Chemistry, 2015, 60, 42-48.	4.1	147
113	Novel 2,5-disubtituted-1,3,4-oxadiazoles with benzimidazole backbone: A new class of \hat{l}^2 -glucuronidase inhibitors and in silico studies. Bioorganic and Medicinal Chemistry, 2015, 23, 3119-3125.	3.0	60
114	Synthetic indole Mannich bases: Their ability to modulate in vitro cellular immunity. Bioorganic Chemistry, 2015, 60, 118-122.	4.1	10
115	Synthesis and evaluation of unsymmetrical heterocyclic thioureas as potent \hat{l}^2 -glucuronidase inhibitors. Medicinal Chemistry Research, 2015, 24, 3166-3173.	2.4	40
116	Synthesis, in vitro evaluation and molecular docking studies of biscoumarin thiourea as a new inhibitor of \hat{l}_{\pm} -glucosidases. Bioorganic Chemistry, 2015, 63, 36-44.	4.1	41
117	Synthesis of 4-thiazolidinone analogs as potent in vitro anti-urease agents. Bioorganic Chemistry, 2015, 63, 123-131.	4.1	85
118	Synthesis of potent urease inhibitors based on disulfide scaffold and their molecular docking studies. Bioorganic and Medicinal Chemistry, 2015, 23, 7211-7218.	3.0	23
119	Synthesis of novel benzohydrazone–oxadiazole hybrids as β-glucuronidase inhibitors and molecular modeling studies. Bioorganic and Medicinal Chemistry, 2015, 23, 7394-7404.	3.0	42
120	Synthesis of novel flavone hydrazones: In-vitro evaluation of \hat{l} ±-glucosidase inhibition, QSAR analysis and docking studies. European Journal of Medicinal Chemistry, 2015, 105, 156-170.	5 . 5	120
121	Synthesis, molecular docking, acetylcholinesterase and butyrylcholinesterase inhibitory potential of thiazole analogs as new inhibitors for Alzheimer disease. Bioorganic Chemistry, 2015, 62, 106-116.	4.1	114
122	Evaluation of 2-indolcarbohydrazones as potent \hat{l}_{\pm} -glucosidase inhibitors, in silico studies and DFT based stereochemical predictions. Bioorganic Chemistry, 2015, 63, 24-35.	4.1	37
123	Triazinoindole analogs as potent inhibitors of \hat{l} ±-glucosidase: Synthesis, biological evaluation and molecular docking studies. Bioorganic Chemistry, 2015, 58, 81-87.	4.1	126
124	Synthesis crystal structure of 2-methoxybenzoylhydrazones and evaluation of their α-glucosidase and urease inhibition potential. Medicinal Chemistry Research, 2015, 24, 1310-1324.	2.4	66
125	Sodium Bromate/Sodium Hydrogen Sulfite: A New Catalyst for the Synthesis of Quinoxaline Derivatives. Letters in Organic Chemistry, 2014, 11, 426-431.	0.5	2
126	Synthesis, characterization antibacterial and antifungal activity of some transition metal complexes. Medicinal Chemistry Research, 2014, 23, 2207-2211.	2.4	6

#	Article	IF	Citations
127	Evaluation of bisindole as potent \hat{l}^2 -glucuronidase inhibitors: Synthesis and in silico based studies. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1825-1829.	2.2	47
128	Synthesis and molecular docking studies of potent α-glucosidase inhibitors based on biscoumarin skeleton. European Journal of Medicinal Chemistry, 2014, 81, 245-252.	5.5	128
129	Synthesis, spectral characterization, antibacterial and antitumor studies of some diorganotin(IV) complexes derived from 2-phenylmonomethylglutarate. Inorganica Chimica Acta, 2014, 423, 177-182.	2.4	7
130	Synthesis of novel derivatives of 4-methylbenzimidazole and evaluation of their biological activities. European Journal of Medicinal Chemistry, 2014, 84, 731-738.	5.5	69
131	2-(2′-Pyridyl) benzimidazole derivatives and their urease inhibitory activity. Medicinal Chemistry Research, 2014, 23, 4447-4454.	2.4	49
132	Organotin (IV) based complexes as promiscuous antibacterials: Synthesis, inÂvitro, in silico pharmacokinetic and docking studies. Journal of Organometallic Chemistry, 2014, 767, 91-100.	1.8	11
133	Synthesis and structure–activity relationship of thiobarbituric acid derivatives as potent inhibitors of urease. Bioorganic and Medicinal Chemistry, 2014, 22, 4119-4123.	3.0	43
134	Synthesis of Benzophenonehydrazone Schiff Bases and their In Vitro Antiglycating Activities. Medicinal Chemistry, 2013, 9, 588-595.	1.5	38
135	Oxindole Derivatives: Synthesis and Antiglycation Activity. Medicinal Chemistry, 2013, 9, 681-688.	1.5	35
136	An efficient synthesis of substituted bis(indolyl)methanes using sodium bromate and sodium hydrogen sulfite in water. Journal of the Iranian Chemical Society, 2012, 9, 81-83.	2.2	8
137	6-Nitrobenzimidazole derivatives: Potential phosphodiesterase inhibitors: Synthesis and structure–activity relationship. Bioorganic and Medicinal Chemistry, 2012, 20, 1521-1526.	3.0	26
138	Acylhydrazide Schiff Bases: DPPH Radical and Superoxide Anion Scavengers. Medicinal Chemistry, 2012, 8, 705-710.	1.5	36
139	Synthesis and \hat{l}^2 -Glucuronidase Inhibitory Potential of Benzimidazole Derivatives. Medicinal Chemistry, 2012, 8, 421-427.	1.5	19
140	2,4,6-Trichlorophenylhydrazine Schiff Bases as DPPH Radical and Super Oxide Anion Scavengers. Medicinal Chemistry, 2012, 8, 452-461.	1.5	38
141	Synthesis of novel inhibitors of \hat{l}^2 -glucuronidase based on benzothiazole skeleton and study of their binding affinity by molecular docking. Bioorganic and Medicinal Chemistry, 2011, 19, 4286-4294.	3.0	91
142	Synthesis of 2,4,6-Trichlorophenyl Hydrazones and their Inhibitory Potential Against Glycation of Protein. Medicinal Chemistry, 2011, 7, 572-580.	1.5	33
143	Synthesis and in vitro Leishmanicidal Activity of Disulfide Derivatives. Medicinal Chemistry, 2011, 7, 704-710.	1.5	22
144	An Improved Method for the Synthesis of Disulfides by Periodic acid and Sodium Hydrogen Sulfite in Water. Letters in Organic Chemistry, 2010, 7, 415-419.	0.5	16

#	Article	IF	CITATIONS
145	Synthesis of Oxadiazole-Based-Thiourea, Evaluation of Their \hat{I}^2 -Glucuronidase Inhibitory Potential, and Molecular Docking Study. Polycyclic Aromatic Compounds, 0 , 1 - 16 .	2.6	O