
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/409904/publications.pdf Version: 2024-02-01



FAZAL DALLM

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Isatin based Schiff bases as inhibitors of α-glucosidase: Synthesis, characterization, in vitro evaluation<br>and molecular docking studies. Bioorganic Chemistry, 2015, 60, 42-48.                                                      | 4.1 | 147       |
| 2  | Synthesis and molecular docking studies of potent α-glucosidase inhibitors based on biscoumarin skeleton. European Journal of Medicinal Chemistry, 2014, 81, 245-252.                                                                    | 5.5 | 128       |
| 3  | Triazinoindole analogs as potent inhibitors of α-glucosidase: Synthesis, biological evaluation and molecular docking studies. Bioorganic Chemistry, 2015, 58, 81-87.                                                                     | 4.1 | 126       |
| 4  | Synthesis of novel flavone hydrazones: In-vitro evaluation of α-glucosidase inhibition, QSAR analysis and docking studies. European Journal of Medicinal Chemistry, 2015, 105, 156-170.                                                  | 5.5 | 120       |
| 5  | Synthesis, molecular docking, acetylcholinesterase and butyrylcholinesterase inhibitory potential of thiazole analogs as new inhibitors for Alzheimer disease. Bioorganic Chemistry, 2015, 62, 106-116.                                  | 4.1 | 114       |
| 6  | Synthesis, in vitro evaluation and molecular docking studies of thiazole derivatives as new inhibitors of α-glucosidase. Bioorganic Chemistry, 2015, 62, 15-21.                                                                          | 4.1 | 109       |
| 7  | Synthesis of novel inhibitors of β-glucuronidase based on benzothiazole skeleton and study of their<br>binding affinity by molecular docking. Bioorganic and Medicinal Chemistry, 2011, 19, 4286-4294.                                   | 3.0 | 91        |
| 8  | Synthesis, α-glucosidase inhibition and molecular docking study of coumarin based derivatives.<br>Bioorganic Chemistry, 2018, 77, 586-592.                                                                                               | 4.1 | 88        |
| 9  | Synthesis of 4-thiazolidinone analogs as potent in vitro anti-urease agents. Bioorganic Chemistry, 2015, 63, 123-131.                                                                                                                    | 4.1 | 85        |
| 10 | Synthesis and in vitro acetylcholinesterase and butyrylcholinesterase inhibitory potential of hydrazide based Schiff bases. Bioorganic Chemistry, 2016, 68, 30-40.                                                                       | 4.1 | 82        |
| 11 | Synthesis and study of the α-amylase inhibitory potential of thiadiazole quinoline derivatives.<br>Bioorganic Chemistry, 2017, 74, 179-186.                                                                                              | 4.1 | 80        |
| 12 | Synthesis of novel derivatives of oxindole, their urease inhibition and molecular docking studies.<br>Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3285-3289.                                                                   | 2.2 | 79        |
| 13 | Benzimidazole derivatives as new α-glucosidase inhibitors and in silico studies. Bioorganic Chemistry,<br>2016, 64, 29-36.                                                                                                               | 4.1 | 75        |
| 14 | Synthesis of alpha amylase inhibitors based on privileged indole scaffold. Bioorganic Chemistry, 2017,<br>72, 248-255.                                                                                                                   | 4.1 | 75        |
| 15 | Biology-oriented drug synthesis (BIODS) of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether<br>derivatives, in vitro α-amylase inhibitory activity and in silico studies. Bioorganic Chemistry, 2017, 74, 1-9.                      | 4.1 | 75        |
| 16 | Synthesis, α -glucosidase inhibitory activity and in silico study of tris -indole hybrid scaffold with<br>oxadiazole ring: As potential leads for the management of type-II diabetes mellitus. Bioorganic<br>Chemistry, 2017, 74, 30-40. | 4.1 | 72        |
| 17 | Synthesis, molecular docking and α-glucosidase inhibition of<br>5-aryl-2-(6′-nitrobenzofuran-2′-yl)-1,3,4-oxadiazoles. Bioorganic Chemistry, 2016, 66, 117-123.                                                                          | 4.1 | 71        |
| 18 | Synthesis of novel derivatives of 4-methylbenzimidazole and evaluation of their biological activities.<br>European Journal of Medicinal Chemistry, 2014, 84, 731-738.                                                                    | 5.5 | 69        |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Synthesis crystal structure of 2-methoxybenzoylhydrazones and evaluation of their α-glucosidase and urease inhibition potential. Medicinal Chemistry Research, 2015, 24, 1310-1324.             | 2.4 | 66        |
| 20 | Synthesis, Î <sup>2</sup> -glucuronidase inhibition and molecular docking studies of hybrid bisindole-thiosemicarbazides analogs. Bioorganic Chemistry, 2016, 68, 56-63.                        | 4.1 | 66        |
| 21 | Synthesis, in vitro α-glucosidase inhibitory potential and molecular docking study of thiadiazole<br>analogs. Bioorganic Chemistry, 2018, 78, 201-209.                                          | 4.1 | 65        |
| 22 | Synthesis of bis-indolylmethanes as new potential inhibitors of β-glucuronidase and their molecular docking studies. European Journal of Medicinal Chemistry, 2018, 143, 1757-1767.             | 5.5 | 65        |
| 23 | Synthesis, <i>In vitro</i> and Docking Studies of New Flavone Ethers as <i>α</i> lucosidase Inhibitors.<br>Chemical Biology and Drug Design, 2016, 87, 361-373.                                 | 3.2 | 63        |
| 24 | Novel 2,5-disubtituted-1,3,4-oxadiazoles with benzimidazole backbone: A new class of β-glucuronidase inhibitors and in silico studies. Bioorganic and Medicinal Chemistry, 2015, 23, 3119-3125. | 3.0 | 60        |
| 25 | Synthesis of 2-acylated and sulfonated 4-hydroxycoumarins: In vitro urease inhibition and molecular docking studies. Bioorganic Chemistry, 2016, 66, 111-116.                                   | 4.1 | 60        |
| 26 | Bisindolylmethane thiosemicarbazides as potential inhibitors of urease: Synthesis and molecular modeling studies. Bioorganic and Medicinal Chemistry, 2018, 26, 152-160.                        | 3.0 | 59        |
| 27 | Novel quinoline derivatives as potent in vitro α-glucosidase inhibitors: in silico studies and SAR predictions. MedChemComm, 2015, 6, 1826-1836.                                                | 3.4 | 58        |
| 28 | Synthesis and biological evaluation of novel N-arylidenequinoline-3-carbohydrazides as potent<br>β-glucuronidase inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 3696-3704.           | 3.0 | 58        |
| 29 | Synthesis of benzothiazole derivatives as a potent α-glucosidase inhibitor. Bioorganic Chemistry, 2019,<br>85, 33-48.                                                                           | 4.1 | 54        |
| 30 | Development of bis-thiobarbiturates as successful urease inhibitors and their molecular modeling studies. Chinese Chemical Letters, 2016, 27, 693-697.                                          | 9.0 | 53        |
| 31 | Oxindole based oxadiazole hybrid analogs: Novel α -glucosidase inhibitors. Bioorganic Chemistry, 2018,<br>76, 273-280.                                                                          | 4.1 | 53        |
| 32 | Hybrid benzothiazole analogs as antiurease agent: Synthesis and molecular docking studies.<br>Bioorganic Chemistry, 2016, 66, 80-87.                                                            | 4.1 | 51        |
| 33 | Synthesis, in vitro alpha-glucosidase inhibitory potential of benzimidazole bearing bis-Schiff bases and their molecular docking study. Bioorganic Chemistry, 2020, 94, 103394.                 | 4.1 | 51        |
| 34 | Synthesis, α-amylase inhibitory potential and molecular docking study of indole derivatives. Bioorganic<br>Chemistry, 2018, 80, 36-42.                                                          | 4.1 | 50        |
| 35 | 2-(2′-Pyridyl) benzimidazole derivatives and their urease inhibitory activity. Medicinal Chemistry<br>Research, 2014, 23, 4447-4454.                                                            | 2.4 | 49        |
| 36 | Novel thiosemicarbazide–oxadiazole hybrids as unprecedented inhibitors of yeast α-glucosidase and in<br>silico binding analysis. RSC Advances, 2016, 6, 33733-33742.                            | 3.6 | 49        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Synthesis of Bis-indolylmethane sulfonohydrazides derivatives as potent α-Glucosidase inhibitors.<br>Bioorganic Chemistry, 2018, 80, 112-120.                                                           | 4.1 | 49        |
| 38 | Synthesis of benzimidazole derivatives as potent β-glucuronidase inhibitors. Bioorganic Chemistry, 2015, 61, 36-44.                                                                                     | 4.1 | 48        |
| 39 | Evaluation of bisindole as potent β-glucuronidase inhibitors: Synthesis and in silico based studies.<br>Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1825-1829.                                | 2.2 | 47        |
| 40 | Synthesis, α-glucosidase inhibitory, cytotoxicity and docking studies of 2-aryl-7-methylbenzimidazoles.<br>Bioorganic Chemistry, 2016, 65, 100-109.                                                     | 4.1 | 47        |
| 41 | Synthesis of novel inhibitors of $\hat{l}^2$ -glucuronidase based on the benzothiazole skeleton and their molecular docking studies. RSC Advances, 2016, 6, 3003-3012.                                  | 3.6 | 46        |
| 42 | Synthesis of 6-chloro-2-Aryl-1H-imidazo[4,5-b]pyridine derivatives: Antidiabetic, antioxidant,<br>β-glucuronidase inhibiton and their molecular docking studies. Bioorganic Chemistry, 2016, 65, 48-56. | 4.1 | 45        |
| 43 | Synthesis of quinoline derivatives as diabetic II inhibitors and molecular docking studies. Bioorganic and Medicinal Chemistry, 2019, 27, 4081-4088.                                                    | 3.0 | 45        |
| 44 | Synthesis, in vitro urease inhibitory potential and molecular docking study of Benzimidazole analogues. Bioorganic Chemistry, 2019, 89, 103024.                                                         | 4.1 | 45        |
| 45 | Synthesis and structure–activity relationship of thiobarbituric acid derivatives as potent inhibitors of urease. Bioorganic and Medicinal Chemistry, 2014, 22, 4119-4123.                               | 3.0 | 43        |
| 46 | Synthesis of novel benzohydrazone–oxadiazole hybrids as β-glucuronidase inhibitors and molecular<br>modeling studies. Bioorganic and Medicinal Chemistry, 2015, 23, 7394-7404.                          | 3.0 | 42        |
| 47 | Synthesis, in vitro evaluation and molecular docking studies of biscoumarin thiourea as a new inhibitor of α-glucosidases. Bioorganic Chemistry, 2015, 63, 36-44.                                       | 4.1 | 41        |
| 48 | Synthesis and evaluation of unsymmetrical heterocyclic thioureas as potent β-glucuronidase inhibitors. Medicinal Chemistry Research, 2015, 24, 3166-3173.                                               | 2.4 | 40        |
| 49 | Synthesis, molecular docking studies of hybrid benzimidazole as α -glucosidase inhibitor. Bioorganic<br>Chemistry, 2017, 70, 184-191.                                                                   | 4.1 | 40        |
| 50 | New triazinoindole bearing thiazole/oxazole analogues: Synthesis, α-amylase inhibitory potential and<br>molecular docking study. Bioorganic Chemistry, 2019, 92, 103284.                                | 4.1 | 38        |
| 51 | 2,4,6-Trichlorophenylhydrazine Schiff Bases as DPPH Radical and Super Oxide Anion Scavengers.<br>Medicinal Chemistry, 2012, 8, 452-461.                                                                 | 1.5 | 38        |
| 52 | Synthesis of Benzophenonehydrazone Schiff Bases and their In Vitro Antiglycating Activities.<br>Medicinal Chemistry, 2013, 9, 588-595.                                                                  | 1.5 | 38        |
| 53 | Evaluation of 2-indolcarbohydrazones as potent α-glucosidase inhibitors, in silico studies and DFT based stereochemical predictions. Bioorganic Chemistry, 2015, 63, 24-35.                             | 4.1 | 37        |
| 54 | Synthesis of piperazine sulfonamide analogs as diabetic-II inhibitors and their molecular docking study. European Journal of Medicinal Chemistry, 2017, 141, 530-537.                                   | 5.5 | 37        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Acylhydrazide Schiff Bases: DPPH Radical and Superoxide Anion Scavengers. Medicinal Chemistry, 2012,<br>8, 705-710.                                                                                                   | 1.5 | 36        |
| 56 | Oxindole Derivatives: Synthesis and Antiglycation Activity. Medicinal Chemistry, 2013, 9, 681-688.                                                                                                                    | 1.5 | 35        |
| 57 | Synthesis and molecular modelling studies of phenyl linked oxadiazole-phenylhydrazone hybrids as potent antileishmanial agents. European Journal of Medicinal Chemistry, 2017, 126, 1021-1033.                        | 5.5 | 34        |
| 58 | In vitro α-glucosidase and α-amylase inhibitory potential and molecular docking studies of<br>benzohydrazide based imines and thiazolidine-4-one derivatives. Journal of Molecular Structure, 2022,<br>1251, 132058.  | 3.6 | 34        |
| 59 | Synthesis, molecular docking study and in vitro thymidine phosphorylase inhibitory potential of oxadiazole derivatives. Bioorganic Chemistry, 2018, 78, 58-67.                                                        | 4.1 | 33        |
| 60 | Synthesis of new arylhydrazide bearing Schiff bases/thiazolidinone: α-Amylase, urease activities and their molecular docking studies. Bioorganic Chemistry, 2019, 91, 103112.                                         | 4.1 | 33        |
| 61 | Synthesis, in vitro urease inhibitory potential and molecular docking study of benzofuran-based-thiazoldinone analogues. Scientific Reports, 2020, 10, 10673.                                                         | 3.3 | 33        |
| 62 | Synthesis of 2,4,6-Trichlorophenyl Hydrazones and their Inhibitory Potential Against Glycation of<br>Protein. Medicinal Chemistry, 2011, 7, 572-580.                                                                  | 1.5 | 33        |
| 63 | Synthesis biological screening and molecular docking studies of some tin (IV) Schiff base adducts.<br>Journal of Photochemistry and Photobiology B: Biology, 2016, 164, 65-72.                                        | 3.8 | 32        |
| 64 | Synthesis, α-glycosidase inhibitory potential and molecular docking study of benzimidazole derivatives.<br>Bioorganic Chemistry, 2020, 95, 103555.                                                                    | 4.1 | 32        |
| 65 | Synthesis of indole-based-thiadiazole derivatives as a potent inhibitor of α-glucosidase enzyme along with in silico study. Bioorganic Chemistry, 2021, 108, 104638.                                                  | 4.1 | 32        |
| 66 | Synthesis, In vitro α-Glucosidase Inhibitory Potential and Molecular Docking Studies of 2-Amino-1,3,4-Oxadiazole Derivatives. Medicinal Chemistry, 2020, 16, 724-734.                                                 | 1.5 | 31        |
| 67 | Synthesis, in vitro alpha glucosidase, urease activities and molecular docking study of bis-indole bearing Schiff base analogs. Chemical Data Collections, 2020, 28, 100396.                                          | 2.3 | 29        |
| 68 | The immunomodulation potential of the synthetic derivatives of benzothiazoles: Implications in immune system disorders through in vitro and in silico studies. Bioorganic Chemistry, 2016, 64, 21-28.                 | 4.1 | 28        |
| 69 | A mutation in the major autophagy gene, WIPI2, associated with global developmental abnormalities.<br>Brain, 2019, 142, 1242-1254.                                                                                    | 7.6 | 28        |
| 70 | Aryl-oxadiazole Schiff bases: Synthesis, α-glucosidase in vitro inhibitory activity and their in silico<br>studies. Arabian Journal of Chemistry, 2020, 13, 4904-4915.                                                | 4.9 | 27        |
| 71 | 6-Nitrobenzimidazole derivatives: Potential phosphodiesterase inhibitors: Synthesis and structure–activity relationship. Bioorganic and Medicinal Chemistry, 2012, 20, 1521-1526.                                     | 3.0 | 26        |
| 72 | Exploring efficacy of indole-based dual inhibitors for α-glucosidase and α-amylase enzymes: In silico,<br>biochemical and kinetic studies. International Journal of Biological Macromolecules, 2020, 154,<br>217-232. | 7.5 | 26        |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Synthesis of novel quinoline-based thiadiazole, evaluation of their antileishmanial potential and molecular docking studies. Bioorganic Chemistry, 2019, 85, 109-116.                                                                  | 4.1 | 25        |
| 74 | Synthesis, antiglycation and antioxidant potentials of benzimidazole derivatives. Journal of King Saud<br>University - Science, 2020, 32, 191-194.                                                                                     | 3.5 | 25        |
| 75 | lsatin based thiosemicarbazide derivatives as potential inhibitor of α-glucosidase, synthesis and their<br>molecular docking study. Journal of Molecular Structure, 2020, 1222, 128922.                                                | 3.6 | 25        |
| 76 | Synthesis, in-vitro and in-silico studies of triazinoindole bearing bis-Schiff base as β-glucuronidase inhibitors. Journal of Molecular Structure, 2021, 1244, 131003.                                                                 | 3.6 | 25        |
| 77 | Polymer-clay Nanocomposites, Preparations and Current Applications: A Review. Current Nanomaterials, 2016, 1, 83-95.                                                                                                                   | 0.4 | 24        |
| 78 | Synthesis and in vitro study of benzofuran hydrazone derivatives as novel alpha-amylase inhibitor.<br>Bioorganic Chemistry, 2017, 75, 78-85.                                                                                           | 4.1 | 24        |
| 79 | Synthesis of potent urease inhibitors based on disulfide scaffold and their molecular docking studies. Bioorganic and Medicinal Chemistry, 2015, 23, 7211-7218.                                                                        | 3.0 | 23        |
| 80 | Synthesis of Benzimidazole–Based Analogs as Anti Alzheimer's Disease Compounds and Their<br>Molecular Docking Studies. Molecules, 2020, 25, 4828.                                                                                      | 3.8 | 23        |
| 81 | Synthesis of indole derivatives as diabetics II inhibitors and enzymatic kinetics study of α-glucosidase<br>and α-amylase along with their in-silico study. International Journal of Biological Macromolecules,<br>2021, 190, 301-318. | 7.5 | 23        |
| 82 | Synthesis and in vitro Leishmanicidal Activity of Disulfide Derivatives. Medicinal Chemistry, 2011, 7,<br>704-710.                                                                                                                     | 1,5 | 22        |
| 83 | Synthesis of 2-(2-methoxyphenyl)-5-phenyl-1,3,4-oxadiazole derivatives and evaluation of their antiglycation potential. Medicinal Chemistry Research, 2016, 25, 225-234.                                                               | 2.4 | 20        |
| 84 | Synthesis of indole analogs as potent β-glucuronidase inhibitors. Bioorganic Chemistry, 2017, 72,<br>323-332.                                                                                                                          | 4.1 | 20        |
| 85 | Synthesis, SAR elucidations and molecular docking study of newly designed isatin based oxadiazole analogs as potent inhibitors of thymidine phosphorylase. Bioorganic Chemistry, 2018, 79, 323-333.                                    | 4.1 | 20        |
| 86 | Design, synthesis, in vitro evaluation, molecular docking and ADME properties studies of hybrid<br>bis-coumarin with thiadiazole as a new inhibitor of Urease. Bioorganic Chemistry, 2019, 92, 103235.                                 | 4.1 | 20        |
| 87 | Evaluation and docking of indole sulfonamide as a potent inhibitor of α-glucosidase enzyme in<br>streptozotocin –induced diabetic albino wistar rats. Bioorganic Chemistry, 2021, 110, 104808.                                         | 4.1 | 20        |
| 88 | Exploring indole-based-thiadiazole derivatives as potent acetylcholinesterase and<br>butyrylcholinesterase enzyme inhibitors. International Journal of Biological Macromolecules, 2021,<br>188, 1025-1036.                             | 7.5 | 20        |
| 89 | Thiazole Based Carbohydrazide Derivatives as α-Amylase Inhibitor and Their Molecular Docking Study.<br>Heteroatom Chemistry, 2019, 2019, 1-8.                                                                                          | 0.7 | 19        |
| 90 | Synthesis of benzimidazole derivatives as potent inhibitors for α-amylase and their molecular docking<br>study in management of type-II diabetes. Journal of Molecular Structure, 2021, 1232, 130029.                                  | 3.6 | 19        |

| #   | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Synthesis, characterization, biological evaluation, and kinetic study of indole base sulfonamide<br>derivatives as acetylcholinesterase inhibitors in search of potent anti-Alzheimer agent. Journal of<br>King Saud University - Science, 2021, 33, 101401. | 3.5 | 19        |
| 92  | Synthesis and Î <sup>2</sup> -Glucuronidase Inhibitory Potential of Benzimidazole Derivatives. Medicinal Chemistry, 2012, 8, 421-427.                                                                                                                        | 1.5 | 19        |
| 93  | Synthesis, structure-activity relationships studies of benzoxazinone derivatives as $\hat{l}\pm$ -chymotrypsin inhibitors. Bioorganic Chemistry, 2017, 70, 210-221.                                                                                          | 4.1 | 18        |
| 94  | Morpholine hydrazone scaffold: Synthesis, anticancer activity and docking studies. Chinese Chemical Letters, 2017, 28, 607-611.                                                                                                                              | 9.0 | 18        |
| 95  | Synthesis, anti-leishmanial and molecular docking study of bis-indole derivatives. BMC Chemistry, 2019, 13, 102.                                                                                                                                             | 3.8 | 18        |
| 96  | Synthesis of Novel Triazinoindole-Based Thiourea Hybrid: A Study on α-Glucosidase Inhibitors and Their<br>Molecular Docking. Molecules, 2019, 24, 3819.                                                                                                      | 3.8 | 18        |
| 97  | Synthesis, Molecular Docking and β-Glucuronidase Inhibitory Potential of Indole Base Oxadiazole<br>Derivatives. Molecules, 2019, 24, 963.                                                                                                                    | 3.8 | 17        |
| 98  | An Improved Method for the Synthesis of Disulfides by Periodic acid and Sodium Hydrogen Sulfite in<br>Water. Letters in Organic Chemistry, 2010, 7, 415-419.                                                                                                 | 0.5 | 16        |
| 99  | Synthesis, molecular docking study and thymidine phosphorylase inhibitory activity of 3-formylcoumarin derivatives. Bioorganic Chemistry, 2018, 78, 17-23.                                                                                                   | 4.1 | 15        |
| 100 | Synthesis and molecular docking study of piperazine derivatives as potent inhibitor of thymidine phosphorylase. Bioorganic Chemistry, 2018, 78, 324-331.                                                                                                     | 4.1 | 15        |
| 101 | Synthesis of substituted benzohydrazide derivatives: In vitro urease activities and their molecular docking studies. Chemical Data Collections, 2021, 36, 100778.                                                                                            | 2.3 | 15        |
| 102 | Synthesis: Small library of hybrid scaffolds of benzothiazole having hydrazone and evaluation of their β-glucuronidase activity. Bioorganic Chemistry, 2018, 77, 47-55.                                                                                      | 4.1 | 14        |
| 103 | Synthesis, $\hat{I}_{\pm}$ -amylase inhibition and molecular docking study of bisindolylmethane sulfonamide derivatives. Medicinal Chemistry Research, 2019, 28, 2010-2022.                                                                                  | 2.4 | 14        |
| 104 | Dicyanoanilines as potential and dual inhibitors of α-amylase and α-glucosidase enzymes: Synthesis,<br>characterization, in vitro, in silico, and kinetics studies. Arabian Journal of Chemistry, 2022, 15, 103651.                                          | 4.9 | 14        |
| 105 | Synthesis of oxadiazole-coupled-thiadiazole derivatives as a potent β-glucuronidase inhibitors and their molecular docking study. Bioorganic and Medicinal Chemistry, 2019, 27, 3145-3155.                                                                   | 3.0 | 13        |
| 106 | Synthesis of diindolylmethane (DIM) bearing thiadiazole derivatives as a potent urease inhibitor.<br>Scientific Reports, 2020, 10, 7969.                                                                                                                     | 3.3 | 13        |
| 107 | In silico binding analysis and SAR elucidations of newly designed benzopyrazine analogs as potent inhibitors of thymidine phosphorylase. Bioorganic Chemistry, 2016, 68, 80-89.                                                                              | 4.1 | 12        |
| 108 | New biologically dynamic hybrid pharmacophore triazinoindole-based-thiadiazole as potent<br>α-glucosidase inhibitors: In vitro and in silico study. International Journal of Biological<br>Macromolecules, 2022, 199, 77-85.                                 | 7.5 | 12        |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Organotin (IV) based complexes as promiscuous antibacterials: Synthesis, inÂvitro, in silico<br>pharmacokinetic and docking studies. Journal of Organometallic Chemistry, 2014, 767, 91-100.                                                  | 1.8 | 11        |
| 110 | Biological properties of Hertia cheirifolia L. flower extracts and effect of the nopol on α-glucosidase.<br>International Journal of Biological Macromolecules, 2017, 95, 757-761.                                                            | 7.5 | 11        |
| 111 | Synthesis, anticancer, molecular docking and QSAR studies of benzoylhydrazone. Journal of Saudi<br>Chemical Society, 2019, 23, 1168-1179.                                                                                                     | 5.2 | 11        |
| 112 | Synthesis of indole based acetohydrazide analogs: Their in vitro and in silico thymidine phosphorylase<br>studies. Bioorganic Chemistry, 2020, 98, 103745.                                                                                    | 4.1 | 11        |
| 113 | Synthesis of triazinoindole bearing sulfonamide derivatives, in vitro α-amylase activity and their molecular docking study. Chemical Data Collections, 2022, 39, 100875.                                                                      | 2.3 | 11        |
| 114 | Synthesis, structural characterization and antibacterial studies of trisubstituted guanidines and their copper(II) complexes. Inorganica Chimica Acta, 2015, 434, 7-13.                                                                       | 2.4 | 10        |
| 115 | Synthetic indole Mannich bases: Their ability to modulate in vitro cellular immunity. Bioorganic<br>Chemistry, 2015, 60, 118-122.                                                                                                             | 4.1 | 10        |
| 116 | Synthesis of novel disulfide and sulfone hybrid scaffolds as potent β-glucuronidase inhibitor.<br>Bioorganic Chemistry, 2016, 68, 15-22.                                                                                                      | 4.1 | 10        |
| 117 | Indole bearing thiadiazole analogs: synthesis, β-glucuronidase inhibition and molecular docking study.<br>BMC Chemistry, 2019, 13, 14.                                                                                                        | 3.8 | 10        |
| 118 | Homozygous missense <i>WIPI2</i> variants cause a congenital disorder of autophagy with neurodevelopmental impairments of variable clinical severity and disease course. Brain Communications, 2021, 3, fcab183.                              | 3.3 | 10        |
| 119 | Synthesis, in vitro thymidine phosphorylase activity and molecular docking study of thiadiazole bearing isatin analogs. Chemical Papers, 2022, 76, 213-224.                                                                                   | 2.2 | 10        |
| 120 | Sulfonated Polyimide-Clay Thin Films for Energy Application. Recent Patents on Nanotechnology, 2016, 10, 221-230.                                                                                                                             | 1.3 | 10        |
| 121 | Synthesis of new isoquinoline-base-oxadiazole derivatives as potent inhibitors of thymidine phosphorylase and molecular docking study. Scientific Reports, 2019, 9, 16015.                                                                    | 3.3 | 9         |
| 122 | Synthesis of Thymidine Phosphorylase Inhibitor Based on Quinoxaline Derivatives and Their Molecular<br>Docking Study. Molecules, 2019, 24, 1002.                                                                                              | 3.8 | 9         |
| 123 | Inhibition potential of phenyl linked benzimidazole-triazolothiadiazole modular hybrids against<br>β-glucuronidase and their interactions thereof. International Journal of Biological Macromolecules,<br>2020, 161, 355-363.                 | 7.5 | 9         |
| 124 | Synthesis, <i>inÂvitro</i> biological screening and docking study of<br>benzo[ <i>d</i> ]oxazole <i>bis</i> Schiff base derivatives as a potent anti-Alzheimer agent. Journal of<br>Biomolecular Structure and Dynamics, 2023, 41, 1649-1664. | 3.5 | 9         |
| 125 | An efficient synthesis of substituted bis(indolyl)methanes using sodium bromate and sodium hydrogen sulfite in water. Journal of the Iranian Chemical Society, 2012, 9, 81-83.                                                                | 2.2 | 8         |
| 126 | Synthesis, thymidine phosphorylase, angiogenic inhibition and molecular docking study of<br>isoquinoline derivatives. Bioorganic Chemistry, 2019, 89, 102999.                                                                                 | 4.1 | 8         |

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Synthesis, spectral characterization, antibacterial and antitumor studies of some diorganotin(IV)<br>complexes derived from 2-phenylmonomethylglutarate. Inorganica Chimica Acta, 2014, 423, 177-182.                                 | 2.4 | 7         |
| 128 | 3,4-Dimethoxybenzohydrazide derivatives as antiulcer: Molecular modeling and density functional studies. Bioorganic Chemistry, 2017, 75, 235-241.                                                                                     | 4.1 | 7         |
| 129 | Synthesis, in vitro antiurease, in vivo antinematodal activity of quinoline analogs and their in-silico study. Bioorganic Chemistry, 2021, 115, 105199.                                                                               | 4.1 | 7         |
| 130 | Synthesis, characterization antibacterial and antifungal activity of some transition metal complexes.<br>Medicinal Chemistry Research, 2014, 23, 2207-2211.                                                                           | 2.4 | 6         |
| 131 | Synthesis of symmetrical bis-Schiff base-disulfide hybrids as highly effective anti-leishmanial agents.<br>Bioorganic Chemistry, 2020, 99, 103819.                                                                                    | 4.1 | 6         |
| 132 | Synthesis, Characterization and Antibacterial Screening of Diorganotin(IV) Complexes Derived From<br>2-[(4-Dimethylamino-Benzylidene)Amino]Phenol. Pharmaceutical Chemistry Journal, 2017, 51, 115-118.                               | 0.8 | 5         |
| 133 | Synthesis of Chromen-4-One-Oxadiazole Substituted Analogs as Potent β-Glucuronidase Inhibitors.<br>Molecules, 2019, 24, 1528.                                                                                                         | 3.8 | 5         |
| 134 | Synthesis of new 1,2-disubstituted benzimidazole analogs as potent inhibitors of β-Glucuronidase and in silico study. Arabian Journal of Chemistry, 2022, 15, 103505.                                                                 | 4.9 | 5         |
| 135 | Synthesis of indole-based oxadiazoles and their interaction with bacterial peptidoglycan and SARS-CoV-2 main protease: In vitro, molecular docking and in silico ADME/Tox study. Journal of Saudi Chemical Society, 2022, 26, 101474. | 5.2 | 5         |
| 136 | Whole-exome sequencing identifies a novel LRAT mutation underlying retinitis punctata albescens in a consanguineous Pakistani family. Genes and Genomics, 2015, 37, 845-849.                                                          | 1.4 | 3         |
| 137 | Synthesis of new urease enzyme inhibitors as antiulcer drug and computational study. Journal of<br>Biomolecular Structure and Dynamics, 2022, 40, 8232-8247.                                                                          | 3.5 | 3         |
| 138 | Sodium Bromate/Sodium Hydrogen Sulfite: A New Catalyst for the Synthesis of Quinoxaline Derivatives. Letters in Organic Chemistry, 2014, 11, 426-431.                                                                                 | 0.5 | 2         |
| 139 | Synthesis, Enzyme Inhibition, and Molecular Docking Studies of Hydrazones from<br>Dichlorophenylacetic Acids. Journal of the Chinese Chemical Society, 2016, 63, 1015-1021.                                                           | 1.4 | 2         |
| 140 | 2â€Mercapto Benzoxazole Derivatives as Novel Leads: Urease Inhibition, In Vitro and In Silico Studies.<br>ChemistrySelect, 2021, 6, 8490-8498.                                                                                        | 1.5 | 2         |
| 141 | Synthesis, in vitro evaluation, and molecular docking studies of benzofuran based hydrazone a new inhibitors of urease. Arabian Journal of Chemistry, 2022, 15, 103954.                                                               | 4.9 | 2         |
| 142 | Synthesis of Benzofuran–based Schiff bases as anti-diabetic compounds and their molecular docking studies. Journal of Molecular Structure, 2022, 1265, 133287.                                                                        | 3.6 | 2         |
| 143 | Synthesis of Hydrazones from Amino Acids and their Antimicrobial and Cytotoxic Activities. Journal of the Chinese Chemical Society, 2017, 64, 1079-1087.                                                                              | 1.4 | 0         |
| 144 | Synthesis of Oxadiazole-Based-Thiourea, Evaluation of Their β-Glucuronidase Inhibitory Potential, and<br>Molecular Docking Study. Polycyclic Aromatic Compounds, 0, , 1-16.                                                           | 2.6 | 0         |

| #   | Article                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Synthesis and Evaluation of 6â€Ethoxyâ€2â€mercaptobenzothiazole Scaffolds as Potential <i>α</i><br>â€Glucosidase Inhibitors. ChemistrySelect, 2022, 7, . | 1.5 | Ο         |