Shou-Yi Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4098958/publications.pdf

Version: 2024-02-01

97 papers

11,047 citations

54 h-index 98 g-index

100 all docs

100 docs citations

100 times ranked

9864 citing authors

#	Article	IF	Citations
1	AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant Journal, 2005, 44, 903-916.	2.8	634
2	Soybean WRKYâ€type transcription factor genes, <i>GmWRKY13, GmWRKY21</i> , and <i>GmWRKY54</i> , confer differential tolerance to abiotic stresses in transgenic <i>Arabidopsis</i> plants. Plant Biotechnology Journal, 2008, 6, 486-503.	4.1	582
3	De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nature Biotechnology, 2014, 32, 1045-1052.	9.4	535
4	Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany, 2015, 66, 695-707.	2.4	493
5	Modulation of Ethylene Responses Affects Plant Salt-Stress Responses. Plant Physiology, 2007, 143, 707-719.	2.3	474
6	Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant Journal, 2011, 68, 302-313.	2.8	471
7	Wheat <i>WRKY</i> genes <i>TaWRKY2</i> and <i>TaWRKY19</i> regulate abiotic stress tolerance in transgenic <i>Arabidopsis</i> plants. Plant, Cell and Environment, 2012, 35, 1156-1170.	2.8	377
8	Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta, 2008, 228, 225-240.	1.6	350
9	Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant Journal, 2010, 62, 316-329.	2.8	335
10	Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biology, 2011, 11, 5.	1.6	287
11	Melatonin delays leaf senescence and enhances salt stress tolerance in rice. Journal of Pineal Research, 2015, 59, 91-101.	3.4	272
12	The Role of Ethylene in Plants Under Salinity Stress. Frontiers in Plant Science, 2015, 6, 1059.	1.7	246
13	The soybean Dofâ€type transcription factor genes, <i>GmDof4</i> and <i>GmDof11</i> , enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant Journal, 2007, 52, 716-729.	2.8	217
14	The Ethylene Receptor ETR2 Delays Floral Transition and Affects Starch Accumulation in Rice. Plant Cell, 2009, 21, 1473-1494.	3.1	205
15	Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Research, 2008, 18, 1047-1060.	5.7	204
16	Gm <scp>WRKY</scp> 27 interacts with Gm <scp>MYB</scp> 174 to reduce expression of <i>Gm<scp>NAC</scp>29</i> for stress tolerance in soybean plants. Plant Journal, 2015, 83, 224-236.	2.8	199
17	Ethylene Signaling in Rice and Arabidopsis: Conserved and Diverged Aspects. Molecular Plant, 2015, 8, 495-505.	3.9	171
18	<i>MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1</i> and <i>ETHYLENE INSENSITIVE3-LIKE2</i> Regulate Ethylene Response of Roots and Coleoptiles and Negatively Affect Salt Tolerance in Rice. Plant Physiology, 2015, 169, 148-165.	2.3	163

#	Article	IF	CITATIONS
19	Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theoretical and Applied Genetics, 2005, 110, 1355-1362.	1.8	156
20	A PP2C-1 Allele Underlying a Quantitative Trait Locus Enhances Soybean 100-Seed Weight. Molecular Plant, 2017, 10, 670-684.	3.9	144
21	Genome-Wide Analysis of DNA Methylation in Soybean. Molecular Plant, 2013, 6, 1961-1974.	3.9	143
22	Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation. Planta, 2010, 232, 1033-1043.	1.6	135
23	An R2R3-type transcription factor gene AtMYB59 regulates root growth and cell cycle progression in Arabidopsis. Cell Research, 2009, 19, 1291-1304.	5.7	131
24	Soybean Trihelix Transcription Factors GmGT-2A and GmGT-2B Improve Plant Tolerance to Abiotic Stresses in Transgenic Arabidopsis. PLoS ONE, 2009, 4, e6898.	1.1	120
25	Identification of Rice Ethylene-Response Mutants and Characterization of MHZ7/OsEIN2 in Distinct Ethylene Response and Yield Trait Regulation. Molecular Plant, 2013, 6, 1830-1848.	3.9	117
26	The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication. Plant Journal, 2016, 86, 530-544.	2.8	113
27	An S-Domain Receptor-Like Kinase, OsSIK2, Confers Abiotic Stress Tolerance and Delays Dark-Induced Leaf Senescence in Rice Â. Plant Physiology, 2013, 163, 1752-1765.	2.3	110
28	Ethylene-Inhibited Jasmonic Acid Biosynthesis Promotes Mesocotyl/Coleoptile Elongation of Etiolated Rice Seedlings. Plant Cell, 2017, 29, 1053-1072.	3.1	109
29	Ethylene Responses in Rice Roots and Coleoptiles Are Differentially Regulated by a Carotenoid Isomerase-Mediated Abscisic Acid Pathway. Plant Cell, 2015, 27, 1061-1081.	3.1	107
30	A rice transcription factor OsbHLH1 is involved in cold stress response. Theoretical and Applied Genetics, 2003, 107, 1402-1409.	1.8	106
31	Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings. PLoS Genetics, 2014, 10, e1004701.	1.5	103
32	Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress. Plant, Cell and Environment, 2006, 29, 1210-1219.	2.8	99
33	Ethylene signaling regulates salt stress response. Plant Signaling and Behavior, 2008, 3, 761-763.	1.2	98
34	Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theoretical and Applied Genetics, 2003, 107, 155-161.	1.8	94
35	Soybean GmPHD-Type Transcription Regulators Improve Stress Tolerance in Transgenic Arabidopsis Plants. PLoS ONE, 2009, 4, e7209.	1.1	93
36	A class B heat shock factor selected for during soybean domestication contributes to salt tolerance by promoting flavonoid biosynthesis. New Phytologist, 2020, 225, 268-283.	3.5	92

#	Article	IF	CITATIONS
37	Serine/threonine kinase activity in the putative histidine kinase-like ethylene receptor NTHK1 from tobacco. Plant Journal, 2003, 33, 385-393.	2.8	91
38	Ethylene signaling in rice and <i>Arabidopsis</i> New regulators and mechanisms. Journal of Integrative Plant Biology, 2021, 63, 102-125.	4.1	91
39	EIN2 regulates salt stress response and interacts with a MA3 domainâ€containing protein ECIP1 in <i>Arabidopsis</i> . Plant, Cell and Environment, 2011, 34, 1678-1692.	2.8	90
40	OsGLU1, A Putative Membrane-bound Endo-1,4-ß-D-glucanase from Rice, Affects Plant Internode Elongation. Plant Molecular Biology, 2006, 60, 137-151.	2.0	89
41	GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca ²⁺ signaling pathways in transgenic soybean. Plant Journal, 2019, 100, 384-398.	2.8	87
42	A Putative Plasma Membrane Cation/proton Antiporter from Soybean Confers Salt Tolerance in Arabidopsis. Plant Molecular Biology, 2005, 59, 809-820.	2.0	86
43	QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L. Merr.). Euphytica, 2005, 142, 137-142.	0.6	84
44	Characterization of soybean genomic features by analysis of its expressed sequence tags. Theoretical and Applied Genetics, 2004, 108, 903-913.	1.8	83
45	Soybean GmMYB73 promotes lipid accumulation in transgenic plants. BMC Plant Biology, 2014, 14, 73.	1.6	83
46	Soybean GmbZIP123 gene enhances lipid content in the seeds of transgenic Arabidopsis plants. Journal of Experimental Botany, 2013, 64, 4329-4341.	2.4	81
47	Soybean miR172a Improves Salt Tolerance and Can Function as a Long-Distance Signal. Molecular Plant, 2016, 9, 1337-1340.	3.9	74
48	Role of Soybean GmbZIP132 under Abscisic Acid and Salt Stresses. Journal of Integrative Plant Biology, 2008, 50, 221-230.	4.1	73
49	Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication. Plant Physiology, 2017, 173, 2208-2224.	2.3	73
50	AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. Theoretical and Applied Genetics, 2002, 105, 815-821.	1.8	72
51	An AP2/EREBP-type transcription-factor gene from rice is cold-inducible and encodes a nuclear-localized protein. Theoretical and Applied Genetics, 2003, 107, 972-979.	1.8	66
52	E3 ubiquitin ligase SOR1 regulates ethylene response in rice root by modulating stability of Aux/IAA protein. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4513-4518.	3.3	66
53	The <scp>A</scp> lfinâ€ike homeodomain finger protein <scp>AL</scp> 5 suppresses multiple negative factors to confer abiotic stress tolerance in <scp>A</scp> rabidopsis. Plant Journal, 2015, 81, 871-883.	2.8	60
54	DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China Rose (Rosa chinensis Jacq.). Plant Growth Regulation, 2010, 60, 199-211.	1.8	59

#	Article	IF	CITATIONS
55	Evidence for Serine/Threonine and Histidine Kinase Activity in the Tobacco Ethylene Receptor Protein NTHK2. Plant Physiology, 2004, 136, 2971-2981.	2.3	58
56	Effects of Tobacco Ethylene Receptor Mutations on Receptor Kinase Activity, Plant Growth and Stress Responses. Plant and Cell Physiology, 2009, 50, 1636-1650.	1.5	53
57	Isolation and Characterization of a Salt- and Drought-inducible Gene for S-adenosylmethionine Decarboxylase from Wheat (Triticum aestivum L.). Journal of Plant Physiology, 2000, 156, 386-393.	1.6	49
58	Cloning and comparative analysis of the gene encoding diacylglycerol acyltransferase from wild type and cultivated soybean. Theoretical and Applied Genetics, 2006, 112, 1086-1097.	1.8	49
59	A new AOX homologous gene OslM1 from rice (Oryza sativa L.) with an alternative splicing mechanism under salt stress. Theoretical and Applied Genetics, 2003, 107, 326-331.	1.8	48
60	The transcription factor AtDOF4.2 regulates shoot branching and seed coat formation in <i>Arabidopsis</i> . Biochemical Journal, 2013, 449, 373-388.	1.7	48
61	Diverse Roles of Ethylene in Regulating Agronomic Traits in Rice. Frontiers in Plant Science, 2017, 8, 1676.	1.7	47
62	Roles of ethylene receptor NTHK1 domains in plant growth, stress response and protein phosphorylation. FEBS Letters, 2006, 580, 1239-1250.	1.3	46
63	Trihelix transcription factor GT-4 mediates salt tolerance via interaction with TEM2 in Arabidopsis. BMC Plant Biology, 2014, 14, 339.	1.6	46
64	A Histone Code Reader and a Transcriptional Activator Interact to Regulate Genes for Salt Tolerance. Plant Physiology, 2017, 175, 1304-1320.	2.3	45
65	Enhancement of salt tolerance in alfalfa transformed with the gene encoding for betaine aldehyde dehydrogenase. Euphytica, 2011, 178, 363-372.	0.6	41
66	A transcriptional regulatory module controls lipid accumulation in soybean. New Phytologist, 2021, 231, 661-678.	3.5	38
67	Nuclear factor Y subunit GmNFYA competes with GmHDA13 for interaction with GmFVE to positively regulate salt tolerance in soybean. Plant Biotechnology Journal, 2021, 19, 2362-2379.	4.1	38
68	Membrane protein MHZ3 stabilizes OsEIN2 in rice by interacting with its Nramp-like domain. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2520-2525.	3.3	37
69	Histidine kinase MHZ1/OsHK1 interacts with ethylene receptors to regulate root growth in rice. Nature Communications, 2020, 11, 518.	5.8	37
70	The GDSL Lipase MHZ11 Modulates Ethylene Signaling in Rice Roots. Plant Cell, 2020, 32, 1626-1643.	3.1	36
71	Isolation and characterization of a full-length resistance gene homolog from soybean. Theoretical and Applied Genetics, 2003, 106, 786-793.	1.8	35
72	Tobacco Translationally Controlled Tumor Protein Interacts with Ethylene Receptor Tobacco Histidine Kinase1 and Enhances Plant Growth through Promotion of Cell Proliferation. Plant Physiology, 2015, 169, 96-114.	2.3	35

#	Article	IF	Citations
73	OsDREB4 Genes in Rice Encode AP2-Containing Proteins that Bind Specifically to the Dehydration-Responsive Element. Journal of Integrative Plant Biology, 2005, 47, 467-476.	4.1	34
74	Soybean GmDREBL Increases Lipid Content in Seeds of Transgenic Arabidopsis. Scientific Reports, 2016, 6, 34307.	1.6	34
75	NIMAâ€related kinase NEK6 affects plant growth and stress response in Arabidopsis. Plant Journal, 2011, 68, 830-843.	2.8	31
76	Tobacco Ankyrin Protein NEIP2 Interacts with Ethylene Receptor NTHK1 and Regulates Plant Growth and Stress Responses. Plant and Cell Physiology, 2015, 56, 803-818.	1.5	31
77	Spatial Expression and Characterization of a Putative Ethylene Receptor Protein NTHK1 in Tobacco. Plant and Cell Physiology, 2002, 43, 810-815.	1.5	30
78	An Alfin-like gene from Atriplex hortensis enhances salt and drought tolerance and abscisic acid response in transgenic Arabidopsis. Scientific Reports, 2018, 8, 2707.	1.6	30
79	Genomic characterization of the S-adenosylmethionine decarboxylase genes from soybean. Theoretical and Applied Genetics, 2004, 108, 842-850.	1.8	26
80	Leveraging Atriplex hortensis choline monooxygenase to improve chilling tolerance in cotton. Environmental and Experimental Botany, 2019, 162, 364-373.	2.0	26
81	Cloning and characterization of an HDZip I gene GmHZ1 from soybean. Planta, 2005, 221, 831-843.	1.6	25
82	Soybean NIMA-Related Kinase1 Promotes Plant Growth and Improves Salt and Cold Tolerance. Plant and Cell Physiology, 2017, 58, 1268-1278.	1.5	22
83	Isolation and characterization of a Pti1 homologue from soybean. Journal of Experimental Botany, 2004, 55, 535-537.	2.4	21
84	Two New Group 3 LEA Genes of Wheat and Their Functional Analysis in Yeast. Journal of Integrative Plant Biology, 2005, 47, 1372-1381.	4.1	21
85	Analysis of expressed receptor-like kinases (RLKs) in soybean. Journal of Genetics and Genomics, 2009, 36, 611-619.	1.7	20
86	The OsEIL1â€OsERF115â€ŧarget gene regulatory module controls grain size and weight in rice. Plant Biotechnology Journal, 2022, 20, 1470-1486.	4.1	20
87	Activation of a DRE-binding transcription factor from Medicago truncatula by deleting a Ser/Thr-rich region. In Vitro Cellular and Developmental Biology - Plant, 2009, 45, 1-11.	0.9	17
88	Characterization of a novel cell cycle-related gene from Arabidopsis. Journal of Experimental Botany, 2005, 56, 807-816.	2.4	16
89	The Putative Ser/Thr Protein Kinase Gene GmAAPK from Soybean is Regulated by Abiotic Stress. Journal of Integrative Plant Biology, 2006, 48, 327-333.	4.1	16
90	Ethylene Biosynthesis, Signaling, and Crosstalk with Other Hormones in Rice. Small Methods, 2020, 4, 1900278.	4.6	16

SHOU-YI CHEN

#	Article	IF	CITATIONS
91	Development of Soybean EST-SSR Markers and Their Use to Assess Genetic Diversity in the Subgenus Soja. Agricultural Sciences in China, 2010, 9, 1423-1429.	0.6	14
92	Roles of Ethylene in Plant Growth and Responses to Stresses. , 2014, , 81-118.		11
93	Rapid Construction of a Plant RNA Interference Expression Vector for Hairpin RNA–Mediated Targeting Using a PCR-Based Method. DNA and Cell Biology, 2009, 28, 605-613.	0.9	5
94	RNA Extraction and Preparation in Rice <i>(Oryza sativa)</i> . Current Protocols in Plant Biology, 2016, 1, 411-418.	2.8	5
95	The continuous accumulation of Na+ in detached leaf sections is associated with over-expression of NTHK1 and salt tolerance in poplar plants. Functional Plant Biology, 2011, 38, 236.	1.1	4
96	Establishment of a transgenic system in fast-growing black locust (Robinia pseudoacacia L.). Forestry Studies in China, 2008, 10, 243-252.	0.4	3
97	Simple Methods for Screening and Statistical Analysis of Leaf Epidermal Cells in Dicotyledonous Plants. Bio-protocol, 2016, 6, .	0.2	3