
John Summerscales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4098772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Cost Model for 3D Woven Preforms. Journal of Composites Science, 2022, 6, 18.	1.4	2
2	Resin-Rich Volumes (RRV) and the Performance of Fibre-Reinforced Composites: A Review. Journal of Composites Science, 2022, 6, 53.	1.4	9
3	Sustainable Manufacture of Natural Fibre Reinforced Epoxy Resin Composites with Coupling Agent in the Hardener. Journal of Composites Science, 2022, 6, 97.	1.4	3
4	The 100 m Composite Ship?. Journal of Marine Science and Engineering, 2022, 10, 408.	1.2	3
5	A review of bast fibres and their composites: Part 4–Âorganisms and enzyme processes. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106149.	3.8	24
6	FATIGUE CRACK GROWTH AND FATIGUE FRACTURE MORPHOLOGY OF RECYCLED RUBBER POWDER–FILLED NR/BR BLEND COMPOUND. Rubber Chemistry and Technology, 2021, 94, 86-107.	0.6	2
7	Evaluation of Tensile Strength of Fibers Extracted from Banana Peels. Journal of Natural Fibers, 2020, 17, 1519-1531.	1.7	7
8	Monomer Selection for In Situ Polymerization Infusion Manufacture of Natural-Fiber Reinforced Thermoplastic-Matrix Marine Composites. Polymers, 2020, 12, 2928.	2.0	16
9	Finite element analysis of natural fiber composites using a self-updating model. Journal of Composite Materials, 2020, 54, 3275-3286.	1.2	16
10	Fibre area correction factors (FACF) for the extended rules-of-mixtures for natural fibre reinforced composites. Materials Today: Proceedings, 2020, 31, S318-S320.	0.9	8
11	Liquid composite molding reproducibility in real-world production of fiber reinforced polymeric composites: a review of challenges and solutions. Advanced Manufacturing: Polymer and Composites Science, 2019, 5, 85-99.	0.2	7
12	Enhanced rules-of-mixture for natural fibre reinforced polymer matrix (NFRP) composites (comment) Tj ETQq0 0 (Ͻ rgBT /Ον	erlock 10 Tf
13	Relationships among the chemical, mechanical and geometrical properties of basalt fibers. Textile Reseach Journal, 2019, 89, 3056-3066.	1.1	18
14	The mechanical properties of flax fibre reinforced poly(lactic acid) bio-composites exposed to wet, freezing and humid environments. Journal of Composite Materials, 2018, 52, 835-850.	1.2	15
15	Estimation of mechanical property degradation of poly(lactic acid) and flax fibre reinforced poly(lactic acid) bio-composites during thermal processing. Measurement: Journal of the International Measurement Confederation, 2018, 116, 367-372.	2.5	19
16	Process-property-performance relationships in CFRP composites using fractal dimension. IOP Conference Series: Materials Science and Engineering, 2018, 388, 012013.	0.3	2

¹⁷ Effect of Time-Dependent Process Temperature Variation During Manufacture of Natural-Fibre Composites. , 2018, , 61-67.
--

18Consolidation process boundaries of the degradation of mechanical properties in compression
moulding of natural-fibre bio-polymer composites. Polymer Degradation and Stability, 2017, 138, 115-125.2.725

JOHN SUMMERSCALES

#	Article	IF	CITATIONS
19	Fibre Distribution and the Process-Property Dilemma. , 2017, , 301-317.		О
20	Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: A review. Industrial Crops and Products, 2017, 108, 660-683.	2.5	126
21	Effect of time at temperature for natural fibres. Procedia Engineering, 2017, 200, 269-275.	1.2	11
22	Technical Note: On modelling thermo-chemical degradation of poly(lactic acid). Polymer Degradation and Stability, 2016, 134, 19-21.	2.7	8
23	In-mould gel-coating for polymer composites. Composites Part A: Applied Science and Manufacturing, 2016, 91, 203-210.	3.8	17
24	Eco-friendly Flax Fibre/Epoxy Resin/Composite System for Surfboard Production. RILEM Bookseries, 2016, , 267-277.	0.2	7
25	A Finite Element Analysis to Validate the Rule-of-Mixtures for the Prediction of the Young's Modulus of Composites with Non-circular Anisotropic Fibres. RILEM Bookseries, 2016, , 173-182.	0.2	1
26	Ranking of fibre-reinforced composite plate surface finish quality by wavelet texture analysis. Insight: Non-Destructive Testing and Condition Monitoring, 2016, 58, 318-323.	0.3	0
27	In-mould gel-coating of polymer composites: a review. Journal of Cleaner Production, 2014, 70, 282-291.	4.6	31
28	Bio-based versus traditional polymer composites. A life cycle assessment perspective. Journal of Cleaner Production, 2014, 74, 135-144.	4.6	115
29	Microstructural Characterisation of Jute/Epoxy Quasi-Unidirectional Composites. Applied Composite Materials, 2014, 21, 885-903.	1.3	7
30	Styrene emissions during gel-coating of composites. Journal of Cleaner Production, 2014, 83, 317-328.	4.6	14
31	Embedded ferromagnetic microwires for monitoring tensile stress in polymeric materials. Composites Part A: Applied Science and Manufacturing, 2014, 61, 216-223.	3.8	24
32	Environmental impacts and thermal insulation performance of innovative composite solutions for building applications. Construction and Building Materials, 2014, 55, 406-414.	3.2	111
33	Durability of Composites in the Marine Environment. Solid Mechanics and Its Applications, 2014, , 1-13.	0.1	7
34	A review of bast fibres and their composites: Part 3 – Modelling. Composites Part A: Applied Science and Manufacturing, 2013, 44, 132-139.	3.8	58
35	Characterisation of Natural Fibre Reinforcements and Composites. Journal of Composites, 2013, 2013, 1-4.	0.8	17
36	Modelling tensile properties of jute fibres. Materials Science and Technology, 2011, 27, 458-460.	0.8	17

JOHN SUMMERSCALES

#	Article	IF	CITATIONS
37	Objective assessment of the surface quality of coated surfaces. Insight: Non-Destructive Testing and Condition Monitoring, 2011, 53, 16-20.	0.3	1
38	A fibre diameter distribution factor (FDDF) for natural fibre composites. Journal of Materials Science, 2011, 46, 5876-5880.	1.7	35
39	Resin Infusion Under Flexible Moulding Technique By In-Mould Gel Coating Using A Flow Medium. Indian Journal of Applied Research, 2011, 3, 292-293.	0.0	2
40	Failure strain as the key design criterion for fracture of natural fibre composites. Composites Science and Technology, 2010, 70, 995-999.	3.8	88
41	Physical Characterization of Jute Technical Fibers: Fiber Dimensions. Journal of Natural Fibers, 2010, 7, 216-228.	1.7	20
42	A review of bast fibres and their composites. Part 1 – Fibres as reinforcements. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1329-1335.	3.8	509
43	A review of bast fibres and their composites. Part 2 – Composites. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1336-1344.	3.8	223
44	Energy Use in the Production of Flax Fiber for the Reinforcement of Composites. Journal of Natural Fibers, 2009, 6, 331-346.	1.7	65
45	Design, manufacture, mechanical testing and numerical modelling of an asymmetric composite crossbow limb. Composites Part B: Engineering, 2009, 40, 249-257.	5.9	8
46	Tensile properties of jute fibres. Materials Science and Technology, 2009, 25, 1289-1295.	0.8	34
47	Multiple Data Set (MDS) weak-link scaling analysis of jute fibres. Composites Part A: Applied Science and Manufacturing, 2009, 40, 1764-1771.	3.8	55
48	Life Cycle Impact Assessment of Flax Fibre for the Reinforcement of Composites. Journal of Biobased Materials and Bioenergy, 2009, 3, 245-248.	0.1	58
49	Measurement of permeability of continuous filament mat glass–fibre reinforcements by saturated radial airflow. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1439-1443.	3.8	21
50	Low-pressure (vacuum infusion) techniques for moulding large composite structures. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2005, 219, 45-58.	0.7	47
51	ACMC/SAMPE Conference on Marine Composites (MarComp) 2003. Composites Part A: Applied Science and Manufacturing, 2005, 36, 1029.	3.8	0
52	The Fractal Dimension of X-Ray Tomographic Sections of a Woven Composite. Advanced Composites Letters, 2004, 13, 096369350401300.	1.3	7
53	Observations on the Fibre Distribution and Fibre Strain in a Woven Fabric Reinforcement. Advanced Composites Letters, 2004, 13, 096369350401300.	1.3	12
54	In-Process Monitoring for Control of ClosedMold Techniques for the Manufacture of Thermosetting Matrix Composites. , 2003, , .		3

#	Article	IF	CITATIONS
55	An introduction to wavelet transforms: a tutorial approach. Insight: Non-Destructive Testing and Condition Monitoring, 2003, 45, 344-353.	0.3	27
56	Effect of elevated temperature on ultimate tensile strength and failure modes of short carbon fibre reinforced magnesium composite. Materials Science and Technology, 2002, 18, 501-506.	0.8	20
57	Voronoi cells, fractal dimensions and fibre composites. Journal of Microscopy, 2001, 201, 153-162.	0.8	26
58	The bulk modulus of carbon fibers. Journal of Materials Science Letters, 2000, 19, 15-16.	0.5	16
59	Process-Property-Structure Relationships for Woven Fibre Composites. , 2000, , 121-130.		0
60	Improving the resin transfer moulding process for fabric-reinforced composites by modification of the fabric architecture. Composites Part A: Applied Science and Manufacturing, 2000, 31, 1433-1441.	3.8	42
61	Review of the durability of marine laminates. , 1999, , 219-266.		8
62	A study of the effects of convergent flow fronts on the properties of fibre reinforced composites produced by RTM. Composites Part A: Applied Science and Manufacturing, 1998, 29, 141-152.	3.8	28
63	Quantitive microstructural analysis for continuous fibre composites. , 1998, , 179-203.		1
64	Data validation procedures for the automated determination of the two-dimensional permeability tensor of a fabric reinforcement. Composites Part A: Applied Science and Manufacturing, 1996, 27, 255-261.	3.8	32
65	Resin Infusion under Flexible Tooling (RIFT): a review. Composites Part A: Applied Science and Manufacturing, 1996, 27, 517-524.	3.8	168
66	Quantitative microstructural examination of RTM fabrics designed for enhanced flow. Composite Structures, 1995, 32, 519-529.	3.1	15
67	Relationship between mechanical performance and microstructure in composites fabricated with flow-enhancing fabrics. Composites, 1995, 26, 675-679.	0.9	21
68	The compressibility of a reinforcement fabric. Composites Manufacturing, 1995, 6, 15-21.	0.4	93
69	The effect of microstructure on flow promotion in resin transfer moulding reinforcement fabrics. Journal of Microscopy, 1995, 177, 207-217.	0.8	13
70	Composites and Composites Manufacturing to be incorporated into a new title. Composites Manufacturing, 1995, 6, 115-116.	0.4	2
71	The effect of reinforcement architecture on the long-range flow in fibrous reinforcements. Composites Manufacturing, 1995, 6, 221-235.	0.4	32
72	Poisson's ratio in fibre-reinforced polymer composites with a high void content. Journal of Materials Science Letters, 1994, 13, 912-914.	0.5	7

JOHN SUMMERSCALES

#	Article	IF	CITATIONS
73	Comment on "quantitative evaluation of fiber distributions in a continuously reinforced aluminium alloy using automatic image analysis― Materials Characterization, 1993, 30, 308.	1.9	0
74	Microstructural image analysis applied to fibre composite materials: a review. Composites, 1993, 24, 383-393.	0.9	75
75	A model for the effect of fibre clustering on the flow rate in resin transfer moulding. Composites Manufacturing, 1993, 4, 27-31.	0.4	29
76	Effect of processing dwell-time on the microstructure of a fibre-reinforced composite. Journal of Microscopy, 1993, 169, 173-182.	0.8	22
77	International Dissertations On Fibre Reinforced Polymers. Journal of Reinforced Plastics and Composites, 1990, 9, 390-418.	1.6	0
78	International Dissertations On Fibre Reinforced Polymers. Journal of Reinforced Plastics and Composites, 1989, 8, 484-535.	1.6	0
79	Poisson's ratios in glass fibre reinforced plastics. Composite Structures, 1988, 9, 173-188.	3.1	20
80	Amplitude distribution acoustic emission signatures of unidirectional fibre composite hybrid materials. Composites, 1984, 15, 200-206.	0.9	20
81	Hybrids — a review. Composites, 1980, 11, 33-38.	0.9	67
82	Carbon fibre and glass fibre hybrid reinforced plastics. Composites, 1978, 9, 157-166.	0.9	167
83	Fatigue Crack Growth of Natural Rubber/Butadiene Rubber Blend Containing Waste Tyre Rubber Powders, Solid State Phenomena, 0, 317, 293-299	0.3	1