Roberto Fernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4098450/publications.pdf Version: 2024-02-01

ROBERTO FERMANDEZ

#	Article	IF	CITATIONS
1	Analysis of the Imaging Characteristics of Holographic Waveguides Recorded in Photopolymers. Polymers, 2020, 12, 1485.	4.5	15
2	3-dimensional modelling of the DOEs formation in PVA/AA photopolymers. , 2020, , .		1
3	Qualitative disorder measurements from backscattering spectra through an optical fiber. Biomedical Optics Express, 2020, 11, 6038.	2.9	0
4	Complex Diffractive Optical Elements Stored in Photopolymers. Polymers, 2019, 11, 1920.	4.5	8
5	Holographic waveguides in photopolymers. Optics Express, 2019, 27, 827.	3.4	36
6	Analysis of holographic polymer-dispersed liquid crystals (HPDLCs) for tunable low frequency diffractive optical elements recording. Optical Materials, 2018, 76, 295-301.	3.6	12
7	Diffractive and Interferometric Characterization of Nanostructured Photopolymer for Sharp Diffractive Optical Elements Recording. Polymers, 2018, 10, 518.	4.5	0
8	UNDERSTANDING REFLECTANCE AND ABSORBANCE USING SPECTROMETRIC MEASUREMENTS. INTED Proceedings, 2018, , .	0.0	0
9	Anamorphic characterization of a PA-LCoS based holographic data storage system. , 2018, , .		0
10	Multiplexed holograms recorded in a low toxicity Biophotopol photopolymer. Proceedings of SPIE, 2017, , .	0.8	0
11	Shrinkage measurement for holographic recording materials. , 2017, , .		1
12	Generation of diffractive optical elements onto photopolymer using liquid crystal on silicon displays. , 2017, , .		0
13	Peristrophic multiplexed holograms recorded in a low toxicity photopolymer. Optical Materials Express, 2017, 7, 133.	3.0	20
14	Modeling Diffractive Lenses Recording in Environmentally Friendly Photopolymer. Polymers, 2017, 9, 278.	4.5	3
15	Optimization of Photopolymer Materials for the Fabrication of a Holographic Waveguide. Polymers, 2017, 9, 395.	4.5	18
16	VISUALIZATION OF STOKES PARAMETERS WITH THE HELP OF ROTATING-WAVEPLATE POLARIMETER AND A LIQUID CRYSTAL ON SILICON MICRODISPLAY. EDULEARN Proceedings, 2017, , .	0.0	0
17	Diffractive lenses in biocompatible photopolymers using LCoS. , 2017, , .		0
18	Blazed Gratings Recorded in Absorbent Photopolymers. Materials, 2016, 9, 195.	2.9	10

ROBERTO FERNANDEZ

#	Article	IF	CITATIONS
19	Dimensional changes in slanted diffraction gratings recorded in photopolymers. Optical Materials Express, 2016, 6, 3455.	3.0	19
20	Effective modeling of PA-LCoS devices and application in data storage in photopolymers. , 2016, , .		0
21	Cylindrical diffractive lenses recorded on PVA/AA photopolymers. Proceedings of SPIE, 2016, , .	0.8	0
22	Influence of the spatial frequency on the diffractive optical elements fabrication in PDLCs. , 2016, , .		0
23	PVA/AA photopolymers and PA-LCoS devices combined for holographic data storage. Proceedings of SPIE, 2016, , .	0.8	2
24	Diffractive lenses recorded in absorbent photopolymers. Optics Express, 2016, 24, 1559.	3.4	22
25	Characterization and comparison of different photopolymers for low spatial frequency recording. Optical Materials, 2015, 44, 18-24.	3.6	19
26	Front Matter: Volume 9606. , 2015, , .		0
27	Influence of index matching on AA/PVA photopolymers for low spatial frequency recording. Applied Optics, 2015, 54, 3132.	2.1	9
28	Exploring binary and ternary modulations on a PA-LCoS device for holographic data storage in a PVA/AA photopolymer. Optics Express, 2015, 23, 20459.	3.4	21
29	Study of the index matching for different photopolymers. , 2015, , .		1
30	Two diffusion photopolymer for sharp diffractive optical elements recording. Optics Letters, 2015, 40, 3221.	3.3	22
31	Influence of Thickness on the Holographic Parameters of H-PDLC Materials. International Journal of Polymer Science, 2014, 2014, 1-7.	2.7	1
32	Influence of the photopolymer properties in the fabrication of diffractive optical elements. , 2014, , .		1
33	Model of low spatial frequency diffractive elements recorded in photopolymers during and after recording. Optical Materials, 2014, 38, 46-52.	3.6	5
34	Influence of a bleaching post-exposure treatment in the performance of H-PDLC devices with high electric conductivity. Proceedings of SPIE, 2014, , .	0.8	0
35	Influence of the set-up on the recording of diffractive optical elements into photopolymers. , 2014, ,		2
36	Analysis of the fabrication of diffractive optical elements in photopolymers. Proceedings of SPIE, 2013,	0.8	5

1

#	Article	IF	CITATIONS
37	Linearity in the response of photopolymers as optical recording media. Optics Express, 2013, 21, 10995.	3.4	17

38 Front Matter: Volume 8499. , 2012, , .