Mark Nikolka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4098380/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linking Glassâ€Transition Behavior to Photophysical and Charge Transport Properties of Highâ€Mobility Conjugated Polymers. Advanced Functional Materials, 2021, 31, 2007359.	14.9	26
2	The effect of the dielectric end groups on the positive bias stress stability of N2200 organic field effect transistors. APL Materials, 2021, 9, 041113.	5.1	13
3	A perspective on overcoming water-related stability challenges in molecular and hybrid semiconductors. MRS Communications, 2020, 10, 98-111.	1.8	8
4	Modification of Indacenodithiophene-Based Polymers and Its Impact on Charge Carrier Mobility in Organic Thin-Film Transistors. Journal of the American Chemical Society, 2020, 142, 652-664.	13.7	101
5	Low-Voltage, Dual-Gate Organic Transistors with High Sensitivity and Stability toward Electrostatic Biosensing. ACS Applied Materials & Interfaces, 2020, 12, 40581-40589.	8.0	26
6	Strong performance enhancement in lead-halide perovskite solar cells through rapid, atmospheric deposition of n-type buffer layer oxides. Nano Energy, 2020, 75, 104946.	16.0	20
7	Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nature Materials, 2020, 19, 491-502.	27.5	485
8	The Effect of Ring Expansion in Thienobenzo[<i>b</i>]indacenodithiophene Polymers for Organic Field-Effect Transistors. Journal of the American Chemical Society, 2019, 141, 18806-18813.	13.7	45
9	An Intrinsically Stretchable Highâ€Performance Polymer Semiconductor with Low Crystallinity. Advanced Functional Materials, 2019, 29, 1905340.	14.9	120
10	Short contacts between chains enhancing luminescence quantum yields and carrier mobilities in conjugated copolymers. Nature Communications, 2019, 10, 2614.	12.8	60
11	High-mobility, trap-free charge transport in conjugated polymer diodes. Nature Communications, 2019, 10, 2122.	12.8	92
12	Multi-scale ordering in highly stretchable polymer semiconducting films. Nature Materials, 2019, 18, 594-601.	27.5	251
13	A Thieno[2,3- <i>b</i>]pyridine-Flanked Diketopyrrolopyrrole Polymer as an n-Type Polymer Semiconductor for All-Polymer Solar Cells and Organic Field-Effect Transistors. Macromolecules, 2018, 51, 71-79.	4.8	58
14	Correlation of Disorder and Charge Transport in a Range of Indacenodithiopheneâ€Based Semiconducting Polymers. Advanced Electronic Materials, 2018, 4, 1700410.	5.1	26
15	Performance Improvements in Conjugated Polymer Devices by Removal of Waterâ€Induced Traps. Advanced Materials, 2018, 30, e1801874.	21.0	69
16	Trap Healing for Highâ€Performance Lowâ€Voltage Polymer Transistors and Solutionâ€Based Analog Amplifiers on Foil. Advanced Materials, 2017, 29, 1606938.	21.0	36
17	High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nature Materials, 2017, 16, 356-362.	27.5	345
18	Dithiopheneindenofluorene (TIF) Semiconducting Polymers with Very High Mobility in Fieldâ€Effect Transistors. Advanced Materials, 2017, 29, 1702523.	21.0	81

Mark Nikolka

#	Article	IF	CITATIONS
19	2D coherent charge transport in highly orderedÂconducting polymers doped by solid stateÂdiffusion. Nature Materials, 2016, 15, 896-902.	27.5	346
20	Azaisoindigo conjugated polymers for high performance n-type and ambipolar thin film transistor applications. Journal of Materials Chemistry C, 2016, 4, 9704-9710.	5.5	65
21	Naphthacenodithiophene Based Polymers—New Members of the Acenodithiophene Family Exhibiting High Mobility and Power Conversion Efficiency. Advanced Functional Materials, 2016, 26, 6961-6969.	14.9	19
22	Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-amplitude thermal motions. Nature Communications, 2016, 7, 10736.	12.8	147
23	Limits for Recombination in a Low Energy Loss Organic Heterojunction. ACS Nano, 2016, 10, 10736-10744.	14.6	79
24	Decoupling Charge Transport and Electroluminescence in a High Mobility Polymer Semiconductor. Advanced Materials, 2016, 28, 6378-6385.	21.0	22
25	Chalcogenophene Comonomer Comparison in Small Band Gap Diketopyrrolopyrrole-Based Conjugated Polymers for High-Performing Field-Effect Transistors and Organic Solar Cells. Journal of the American Chemical Society, 2015, 137, 1314-1321.	13.7	363
26	Inâ€Situ Switching from Barrierâ€Limited to Ohmic Anodes for Efficient Organic Optoelectronics. Advanced Functional Materials, 2014, 24, 3051-3058.	14.9	33
27	Twoâ€Dimensional Carrier Distribution in Topâ€Gate Polymer Fieldâ€Effect Transistors: Correlation between Width of Density of Localized States and Urbach Energy. Advanced Materials, 2014, 26, 728-733.	21.0	149
28	Approaching disorder-free transport in high-mobility conjugated polymers. Nature, 2014, 515, 384-388.	27.8	844
29	The effect of thiadiazole out-backbone displacement in indacenodithiophene semiconductor polymers. Journal of Materials Chemistry C, 2014, 2, 8789-8795.	5.5	23