
Tetsuya Shintani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4098376/publications.pdf Version: 2024-02-01

Τετςμνά Shintani

#	Article	IF	CITATIONS
1	Generalizations of the Wedderburn number: Parameterizing upwelling in stratified lakes. Limnology and Oceanography, 2010, 55, 1377-1389.	1.6	63
2	Residual currents over a uniform slope due to breaking of internal waves in a twoâ€layer system. Journal of Geophysical Research, 2012, 117, .	3.3	58
3	Horizontal and residual circulations driven by wind stress curl in Tokyo Bay. Journal of Geophysical Research: Oceans, 2014, 119, 1977-1992.	1.0	47
4	Importance of geometric characteristics for salinity distribution in convergent estuaries. Journal of Hydrology, 2012, 448-449, 1-13.	2.3	30
5	Reversal of Secondary Flows in a Sharp Channel Bend. Coastal Engineering Journal, 2016, 58, 1650002-1-1650002-23.	0.7	28
6	Thermal stratification responses of a monomictic reservoir under different seasons and operation schemes. Science of the Total Environment, 2021, 767, 144423.	3.9	24
7	Evaluation of entrainment velocity induced by wind stress in a two-layer system. Hydrological Research Letters, 2010, 4, 70-74.	0.3	23
8	Integration of Submerged Aquatic Vegetation Motion Within Hydrodynamic Models. Water Resources Research, 2020, 56, e2020WR027369.	1.7	21
9	Adaptive management in Kushiro Wetland in the context of salt wedge intrusion due to sea level rise. Hydrological Research Letters, 2013, 7, 1-5.	0.3	19
10	Breaking of Internal Kelvin Waves Shoaling on a Slope. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016120.	1.0	13
11	A three-dimensional environmental hydrodynamic model, Fantom-Refined: Validation and application for saltwater intrusion in a meso-macrotidal estuary. Ocean Modelling, 2019, 141, 101425.	1.0	12
12	HYDRODYNAMIC SIMULATOR BASED ON BIOLOGIOCAL-CELL STRUCTURE CONCEPT. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2015, 71, I_751-I_756.	0.0	6
13	Analysis of interaction between morphology and flow structure in a meandering macro-tidal estuary using 3-D hydrodynamic modeling. Estuarine, Coastal and Shelf Science, 2022, 264, 107687.	0.9	6
14	Effect of pycnocline thickness on internal solitary wave breaking over a slope. Ocean Engineering, 2021, 230, 108884.	1.9	5
15	INFLUENCE OF WATER CONTROL FACILITIES ON THERMAL STRATIFICATION OF OGOUCHI RESERVOIR FOR 58 YEARS. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2019, 75, I_685-I_690.	0.0	4
16	A new concept for lower-lying land areas and coastal villages safe from natural disasters. , 2011, , .		3
17	Mediating the Effects of Climate on the Temperature and Thermal Structure of a Monomictic Reservoir through Use of Hydraulic Facilities. Water (Switzerland), 2021, 13, 1128.	1.2	3
18	Water Particle Trajectory and Mass Transport of Internal Waves Propagating Over A Constant Slope. Journal of Japan Society of Civil Engineers Ser A2 (Applied Mechanics (AM)), 2012, 68, I_653-I_660.	0.1	2

#	ARTICLE	IF	CITATIONS
19	APPLICATION OF THE MODIFIED GAUSSIAN DISTRIBUTION METHOD TO REPRODUCE WATER TEMPERATURES OF THE OGOUCHI RESERVOIR. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2021, 77, I_961-I_966.	0.0	1
20	EFFECT OF TOPOGRAPHY ON SALINITY DISTRIBUTION: A CASE STUDY IN A HIGH-TIDAL RANGE ESTUARY. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2012, 68, I_271-I_276.	0.0	0
21	Effects of Diffusive Interface on Mass Transport by Internal Waves Propagating in a Two-layer Fluid System. Journal of Japan Society of Civil Engineers Ser A2 (Applied Mechanics (AM)), 2013, 69, I_529-I_536.	0.1	0
22	VALIDATION OF SAV MODEL USING LABORATORY EXPERIMENTS. Journal of Japan Society of Civil Engineers Ser B3 (Ocean Engineering), 2021, 77, I_205-I_210.	0.0	0
23	Effect of coastal boundary representation on basin-scale internal waves. Coastal Engineering Journal, 2021, 63, 160-173.	0.7	Ο
24	EFFECT OF PYCNOCLINE THICKNESS ON INTERNAL SOLITARY WAVE BREAKING OVER A SLOPE AND ITS CLASSIFICATION. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2021, 77, 59-73.	0.0	0
25	CLASSIFICATION OF BREATHER BREAKING OVER A UNIFORM SLOPE. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2021, 77, I_343-I_348.	0.0	0