David J Wales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4098123/publications.pdf Version: 2024-02-01

		8732	10127
319	22,774	75	140
papers	citations	h-index	g-index
325	325	325	12964
all docs	docs citations	times ranked	citing authors

DAVID LWALES

#	Article	IF	CITATIONS
1	Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms. Journal of Physical Chemistry A, 1997, 101, 5111-5116.	1.1	2,579
2	Theoretical studies of icosahedral C60 and some related species. Chemical Physics Letters, 1986, 128, 501-503.	1.2	1,789
3	Global Optimization of Clusters, Crystals, and Biomolecules. Science, 1999, 285, 1368-1372.	6.0	995
4	Archetypal energy landscapes. Nature, 1998, 394, 758-760.	13.7	528
5	Global minima of water clusters (H2O)n, nâ‰ 2 1, described by an empirical potential. Chemical Physics Letters, 1998, 286, 65-72.	1.2	405
6	The effect of the range of the potential on the structures of clusters. Journal of Chemical Physics, 1995, 103, 4234-4249.	1.2	380
7	Defect migration in crystalline silicon. Physical Review B, 1999, 59, 3969-3980.	1.1	371
8	Discrete path sampling. Molecular Physics, 2002, 100, 3285-3305.	0.8	359
9	A doubly nudged elastic band method for finding transition states. Journal of Chemical Physics, 2004, 120, 2082-2094.	1.2	356
10	Prediction of Sepsis in the Intensive Care Unit With Minimal Electronic Health Record Data: A Machine Learning Approach. JMIR Medical Informatics, 2016, 4, e28.	1.3	331
11	The double-funnel energy landscape of the 38-atom Lennard-Jones cluster. Journal of Chemical Physics, 1999, 110, 6896-6906.	1.2	279
12	Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism. Science, 2016, 351, 1310-1313.	6.0	256
13	Evolution of the potential energy surface with size for Lennard-Jones clusters. Journal of Chemical Physics, 1999, 111, 8417-8428.	1.2	222
14	Structural consequences of the range of the interatomic potential A menagerie of clusters. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 4233-4243.	1.7	216
15	Thermodynamics of Global Optimization. Physical Review Letters, 1998, 80, 1357-1360.	2.9	208
16	Coexistence in small inert gas clusters. Molecular Physics, 1993, 78, 151-171.	0.8	198
17	A Microscopic Basis for the Global Appearance of Energy Landscapes. Science, 2001, 293, 2067-2070.	6.0	198
18	Virulence-Associated Substitution D222G in the Hemagglutinin of 2009 Pandemic Influenza A(H1N1) Virus Affects Receptor Binding. Journal of Virology, 2010, 84, 11802-11813.	1.5	197

#	Article	IF	CITATIONS
19	Some further applications of discrete path sampling to cluster isomerization. Molecular Physics, 2004, 102, 891-908.	0.8	190
20	Potential Energy and Free Energy Landscapes. Journal of Physical Chemistry B, 2006, 110, 20765-20776.	1.2	181
21	Thermodynamics and the global optimization of Lennard-Jones clusters. Journal of Chemical Physics, 1998, 109, 8143-8153.	1.2	178
22	From Topographies to Dynamics on Multidimensional Potential Energy Surfaces of Atomic Clusters. Science, 1996, 271, 963-966.	6.0	173
23	Saddle points and dynamics of Lennard-Jones clusters, solids, and supercooled liquids. Journal of Chemical Physics, 2002, 116, 3777-3788.	1.2	172
24	Energy landscapes: calculating pathways and rates. International Reviews in Physical Chemistry, 2006, 25, 237-282.	0.9	169
25	Theoretical study of water trimer. Journal of the American Chemical Society, 1993, 115, 11180-11190.	6.6	161
26	Thermodynamics and Kinetics of Aggregation for the GNNQQNY Peptide. Journal of the American Chemical Society, 2007, 129, 16005-16014.	6.6	161
27	Membrane Protein Structure, Function, and Dynamics: a Perspective from Experiments and Theory. Journal of Membrane Biology, 2015, 248, 611-640.	1.0	157
28	The energy landscape as a unifying theme in molecular science. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363, 357-377.	1.6	156
29	STATISTICAL THERMODYNAMICS: Taking a Walk on a Landscape. Science, 2001, 293, 612-613.	6.0	156
30	Transition states and rearrangement mechanisms from hybrid eigenvector-following and density functional theory Chemical Physics Letters, 2001, 341, 185-194.	1.2	155
31	Energy Landscapes: From Clusters to Biomolecules. Advances in Chemical Physics, 2007, , 1-111.	0.3	153
32	Finding pathways between distant local minima. Journal of Chemical Physics, 2005, 122, 234903.	1.2	152
33	Structure, Dynamics, and Thermodynamics of Clusters: Tales from Topographic Potential Surfaces. Science, 1996, 271, 925-929.	6.0	150
34	Calculation of thermodynamic properties of small Lennardâ€Jones clusters incorporating anharmonicity. Journal of Chemical Physics, 1995, 102, 9659-9672.	1.2	146
35	Free energy landscapes of model peptides and proteins. Journal of Chemical Physics, 2003, 118, 3891-3897.	1.2	143
36	Stationary points and dynamics in high-dimensional systems. Journal of Chemical Physics, 2003, 119, 12409-12416.	1.2	142

#	Article	IF	CITATIONS
37	The Structure and Stability of Atomic Liquids: From Clusters to Bulk. Science, 1996, 271, 484-487.	6.0	140
38	The effect of the range of the potential on the structure and stability of simple liquids: from clusters to bulk, from sodium to. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 4859-4894.	0.6	138
39	Transmembrane Structures for Alzheimer's Aβ _{1â^'42} Oligomers. Journal of the American Chemical Society, 2010, 132, 13300-13312.	6.6	136
40	Folding of the GB1 hairpin peptide from discrete path sampling. Journal of Chemical Physics, 2004, 121, 1080-1090.	1.2	133
41	Energy landscapes: some new horizons. Current Opinion in Structural Biology, 2010, 20, 3-10.	2.6	133
42	How the range of pair interactions governs features of multidimensional potentials. Journal of Chemical Physics, 1990, 93, 8745-8756.	1.2	131
43	Structure and energetics of model metal clusters. Journal of Chemical Physics, 1992, 96, 8520-8534.	1.2	130
44	Theoretical study of the water pentamer. Journal of Chemical Physics, 1996, 105, 6957-6971.	1.2	127
45	Free energy barriers to melting in atomic clusters. Journal of Chemical Physics, 1994, 101, 1460-1476.	1.2	121
46	Structure and dynamics of spherical crystals characterized for the Thomson problem. Physical Review B, 2006, 74, .	1.1	118
47	Quantum partition functions from classical distributions: Application to rare-gas clusters. Journal of Chemical Physics, 2001, 114, 7312-7329.	1.2	117
48	Energy landscape of a model protein. Journal of Chemical Physics, 1999, 111, 6610-6616.	1.2	115
49	Structural relaxation in Morse clusters: Energy landscapes. Journal of Chemical Physics, 1999, 110, 328-334.	1.2	114
50	Free energy surfaces from an extended harmonic superposition approach and kinetics for alanine dipeptide. Chemical Physics Letters, 2008, 466, 105-115.	1.2	109
51	Energy landscapes of some model glass formers. Physical Review B, 2001, 64, .	1.1	104
52	Chaos in small clusters of inert gas atoms. Journal of Chemical Physics, 1992, 96, 1376-1390.	1.2	102
53	Rearrangements of model (H2O)8 and (H2O)20 clusters. Journal of Chemical Physics, 1993, 98, 7257-7268.	1.2	99
54	Prediction of early unplanned intensive care unit readmission in a UK tertiary care hospital: a cross-sectional machine learning approach. BMJ Open, 2017, 7, e017199.	0.8	95

#	Article	IF	CITATIONS
55	Folding Pathways and Rates for the Three-Stranded β-Sheet Peptide Beta3s using Discrete Path Sampling. Journal of Physical Chemistry B, 2008, 112, 8760-8769.	1.2	93
56	Exploring Energy Landscapes. Annual Review of Physical Chemistry, 2018, 69, 401-425.	4.8	93
57	On potential energy surfaces and relaxation to the global minimum. Journal of Chemical Physics, 1996, 105, 8428-8445.	1.2	92
58	Rearrangements of the water trimer. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2505.	1.7	91
59	Global optimization and folding pathways of selected α-helical proteins. Journal of Chemical Physics, 2005, 123, 234901.	1.2	91
60	Locating stationary points for clusters in cartesian coordinates. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 1305.	1.7	90
61	Equilibrium thermodynamics from basin-sampling. Journal of Chemical Physics, 2006, 124, 044102.	1.2	89
62	Surveying a potential energy surface by eigenvector-following Applications to global optimisation and the structural transformations of clusters. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1997, 40, 194-197.	1.0	86
63	Structural relaxation in atomic clusters: Master equation dynamics. Physical Review E, 1999, 60, 3701-3718.	0.8	86
64	Coexistence and phase separation in clusters: From the small to the notâ€soâ€small regime. Journal of Chemical Physics, 1995, 103, 3061-3070.	1.2	84
65	Theoretical study of the water tetramer. Journal of Chemical Physics, 1997, 106, 7193-7207.	1.2	84
66	Mapping Surface Hydrophobicity of α-Synuclein Oligomers at the Nanoscale. Nano Letters, 2018, 18, 7494-7501.	4.5	83
67	Finding saddle points for clusters. Journal of Chemical Physics, 1989, 91, 7002-7010.	1.2	82
68	Structure and torsional dynamics of the water octamer from THz laser spectroscopy near 215 μm. Science, 2016, 352, 1194-1197.	6.0	82
69	Energy landscapes for diffusion: Analysis of cage-breaking processes. Journal of Chemical Physics, 2008, 129, 164507.	1.2	80
70	Instanton calculations of tunneling splittings for water dimer and trimer. Journal of Chemical Physics, 2011, 135, 124109.	1.2	80
71	Intrinsically Disordered Energy Landscapes. Scientific Reports, 2015, 5, 10386.	1.6	80
72	An order parameter approach to coexistence in atomic clusters. Journal of Chemical Physics, 1995, 102, 9673-9688.	1.2	79

#	Article	IF	CITATIONS
73	Calculating rate constants and committor probabilities for transition networks by graph transformation. Journal of Chemical Physics, 2009, 130, 204111.	1.2	79
74	Energy landscapes of model polyalanines. Journal of Chemical Physics, 2002, 117, 1363-1376.	1.2	78
75	Energy landscapes, global optimization and dynamics of the polyalanine Ac(ala)8NHMe. Journal of Chemical Physics, 2001, 114, 6443-6454.	1.2	77
76	Crystals of binary Lennard-Jones solids. Physical Review B, 2001, 64, .	1.1	77
77	The favored cluster structures of model glass formers. Journal of Chemical Physics, 2003, 118, 2792.	1.2	77
78	Exploring biomolecular energy landscapes. Chemical Communications, 2017, 53, 6974-6988.	2.2	77
79	Defect motifs for spherical topologies. Physical Review B, 2009, 79, .	1.1	76
80	Perspective: Insight into reaction coordinates and dynamics from the potential energy landscape. Journal of Chemical Physics, 2015, 142, 130901.	1.2	76
81	Basins of attraction for stationary points on a potential-energy surface. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 653.	1.7	74
82	Temperature Controls Guest Uptake and Release from Zn ₄ L ₄ Tetrahedra. Journal of the American Chemical Society, 2019, 141, 14534-14538.	6.6	74
83	The free energy landscape and dynamics of met-enkephalin. Journal of Chemical Physics, 2003, 119, 9947-9955.	1.2	71
84	Energy landscapes for machine learning. Physical Chemistry Chemical Physics, 2017, 19, 12585-12603.	1.3	71
85	Energy landscapes of model glasses. II. Results for constant pressure. Journal of Chemical Physics, 2003, 118, 4583-4593.	1.2	70
86	Theoretical study of rearrangements in water dimer and trimer. Molecular Physics, 2002, 100, 2793-2806.	0.8	67
87	Symmetry, near-symmetry and energetics. Chemical Physics Letters, 1998, 285, 330-336.	1.2	65
88	Decoding the energy landscape: extracting structure, dynamics and thermodynamics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 2877-2899.	1.6	65
89	Symmetrisation schemes for global optimisation of atomic clusters. Physical Chemistry Chemical Physics, 2013, 15, 3965.	1.3	64
90	Energy Landscapes of Clusters Bound by Shortâ€Ranged Potentials. ChemPhysChem, 2010, 11, 2491-2494.	1.0	63

#	Article	IF	CITATIONS
91	Pinning Down the Water Hexamer. Science, 2012, 336, 814-815.	6.0	63
92	Energy Landscapes for Proteins: From Single Funnels to Multifunctional Systems. Advanced Theory and Simulations, 2019, 2, 1800175.	1.3	62
93	Emergent Complexity from Simple Anisotropic Building Blocks: Shells, Tubes, and Spirals. ACS Nano, 2010, 4, 219-228.	7.3	58
94	Surveying a complex potential energy landscape: Overcoming broken ergodicity using basin-sampling. Chemical Physics Letters, 2013, 584, 1-9.	1.2	57
95	The structure of (C60)N clusters. Chemical Physics Letters, 1996, 262, 167-174.	1.2	56
96	Characterization of anharmonicities on complex potential energy surfaces: Perturbation theory and simulation. Journal of Chemical Physics, 2001, 115, 9627-9636.	1.2	56
97	Observation time scale, free-energy landscapes, and molecular symmetry. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 617-622.	3.3	56
98	Decoupled Associative and Dissociative Processes in Strong yet Highly Dynamic Host–Guest Complexes. Journal of the American Chemical Society, 2017, 139, 12985-12993.	6.6	56
99	Local interpretation of chaotic dynamics in a many-body classical Hamiltonian system (Ar3). Journal of Physics B: Atomic, Molecular and Optical Physics, 1991, 24, L351-L357.	0.6	55
100	How many dimensions are required to approximate the potential energy landscape of a model protein?. Journal of Chemical Physics, 2005, 122, 084714.	1.2	53
101	Simulations of rigid bodies in an angle-axis framework. Physical Chemistry Chemical Physics, 2009, 11, 1970.	1.3	53
102	Energy landscapes of colloidal clusters: thermodynamics and rearrangement mechanisms. Nanoscale, 2012, 4, 1085-1100.	2.8	52
103	Investigation of Terahertz Vibration–Rotation Tunneling Spectra for the Water Octamer. Journal of Physical Chemistry A, 2013, 117, 6960-6966.	1.1	52
104	Relaxation dynamics of C60. Journal of Chemical Physics, 1998, 109, 6691-6700.	1.2	51
105	Ab initio study of rearrangements between C60 fullerenes. Chemical Physics Letters, 2003, 374, 125-131.	1.2	50
106	Coarse-Grained Simulations Complemented by Atomistic Molecular Dynamics Provide New Insights into Folding and Unfolding of Human Telomeric G-Quadruplexes. Journal of Chemical Theory and Computation, 2016, 12, 6077-6097.	2.3	50
107	Graph transformation method for calculating waiting times in Markov chains. Journal of Chemical Physics, 2006, 124, 234110.	1.2	49
108	Turning intractable counting into sampling: Computing the configurational entropy of three-dimensional jammed packings. Physical Review E, 2016, 93, 012906.	0.8	48

#	Article	IF	CITATIONS
109	Connectivity in the potential energy landscape for binary Lennard-Jones systems. Journal of Chemical Physics, 2009, 130, 194508.	1.2	47
110	Energy Landscapes, Folding Mechanisms, and Kinetics of RNA Tetraloop Hairpins. Journal of the American Chemical Society, 2014, 136, 18052-18061.	6.6	47
111	Dynamics and thermodynamics of supercooled liquids and glasses from a model energy landscape. Physical Review B, 2001, 63, .	1.1	45
112	Pathways for dissociative methane chemisorption on $Pt{110}\hat{a}'(1\tilde{A}-2)$. Physical Review B, 2005, 71, .	1.1	45
113	Global minima of transition metal clusters described by Finnis–Sinclair potentials: A comparison with semi-empirical molecular orbital theory. Philosophical Magazine, 2009, 89, 3311-3332.	0.7	44
114	Energy landscapes for shells assembled from pentagonal and hexagonal pyramids. Physical Chemistry Chemical Physics, 2009, 11, 2098.	1.3	44
115	Benchmarks for Characterization of Minima, Transition States, and Pathways in Atomic, Molecular, and Condensed Matter Systems. Journal of Chemical Theory and Computation, 2014, 10, 5476-5482.	2.3	43
116	Comparison of double-ended transition state search methods. Journal of Chemical Physics, 2007, 127, 134102.	1.2	42
117	Protein structure prediction using basin-hopping. Journal of Chemical Physics, 2008, 128, 225106.	1.2	42
118	The Energy Landscape, Folding Pathways and the Kinetics of a Knotted Protein. PLoS Computational Biology, 2010, 6, e1000835.	1.5	41
119	Designed to yield. Nature Materials, 2011, 10, 410-411.	13.3	41
120	The dynamics of structural transitions in sodium chloride clusters. Journal of Chemical Physics, 1999, 111, 11070-11079.	1.2	40
121	Kinetic analysis of discrete path sampling stationary point databases. Molecular Physics, 2006, 104, 1497-1507.	0.8	40
122	Refined kinetic transition networks for the GB1 hairpin peptide. Physical Chemistry Chemical Physics, 2009, 11, 3341.	1.3	40
123	Proline provides site-specific flexibility for in vivo collagen. Scientific Reports, 2018, 8, 13809.	1.6	40
124	Nested sampling for physical scientists. Nature Reviews Methods Primers, 2022, 2, .	11.8	40
125	Energy landscapes and properties of biomolecules. Physical Biology, 2005, 2, S86-S93.	0.8	39
126	Clusters of C60 molecules. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 1061.	1.7	37

#	Article	IF	CITATIONS
127	Comparison of kinetic Monte Carlo and molecular dynamics simulations of diffusion in a model glass former. Journal of Chemical Physics, 2004, 120, 8134-8143.	1.2	37
128	Rational design of helical architectures. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20164-20167.	3.3	37
129	Mode-Specific Chemisorption of CH ₄ on Pt{110}-(1 × 2) Explored by First-Principles Molecular Dynamics. Journal of Physical Chemistry C, 2011, 115, 21832-21842.	1.5	37
130	Evolution of the Potential Energy Landscape with Static Pulling Force for Two Model Proteins. Journal of Physical Chemistry B, 2012, 116, 8394-8411.	1.2	37
131	Symmetrization of the AMBER and CHARMM force fields. Journal of Computational Chemistry, 2010, 31, 1402-1409.	1.5	36
132	A Local Rigid Body Framework for Global Optimization of Biomolecules. Journal of Chemical Theory and Computation, 2012, 8, 5159-5165.	2.3	36
133	Visualizing Basins of Attraction for Different Minimization Algorithms. Journal of Physical Chemistry B, 2013, 117, 12717-12723.	1.2	36
134	Structure, thermodynamics, and rearrangement mechanisms in gold clusters—insights from the energy landscapes framework. Nanoscale, 2018, 10, 2004-2016.	2.8	36
135	What can calculations employing empirical potentials teach us about bare transition-metal clusters?. Journal of the Chemical Society Dalton Transactions, 1996, , 611.	1.1	35
136	Bifurcation tunneling dynamics in the water trimer. Journal of Chemical Physics, 2002, 117, 8823-8835.	1.2	35
137	Quasi-Continuous Interpolation Scheme for Pathways between Distant Configurations. Journal of Chemical Theory and Computation, 2012, 8, 5020-5034.	2.3	35
138	Designing a Bernal Spiral from Patchy Colloids. ACS Nano, 2013, 7, 1246-1256.	7.3	35
139	Quantum tunneling splittings from path-integral molecular dynamics. Journal of Chemical Physics, 2016, 144, 114108.	1.2	34
140	Decoding heat capacity features from the energy landscape. Physical Review E, 2017, 95, 030105.	0.8	34
141	Energy Landscape and Pathways for Transitions between Watson–Crick and Hoogsteen Base Pairing in DNA. Journal of Physical Chemistry Letters, 2018, 9, 229-241.	2.1	34
142	Tunneling splittings from path-integral molecular dynamics using a Langevin thermostat. Journal of Chemical Physics, 2018, 148, 234102.	1.2	34
143	Structural predictions for (C60)N clusters with an all-atom potential. Chemical Physics Letters, 1997, 269, 408-412.	1.2	33
144	Mode-specificity and transition state-specific energy redistribution in the chemisorption of CH4 on Ni{100}. Physical Chemistry Chemical Physics, 2012, 14, 15879.	1.3	33

#	Article	IF	CITATIONS
145	Structures and Energy Landscapes of Hydrated Sulfate Clusters. Journal of Chemical Theory and Computation, 2015, 11, 2377-2384.	2.3	33
146	Energy landscapes, structural topologies and rearrangement mechanisms in clusters of dipolar particles. Soft Matter, 2013, 9, 5407.	1.2	32
147	Communication: A new paradigm for structure prediction in multicomponent systems. Journal of Chemical Physics, 2013, 139, 221101.	1.2	32
148	Multifunctional energy landscape for a DNA G-quadruplex: An evolved molecular switch. Journal of Chemical Physics, 2017, 147, 152715.	1.2	32
149	Tunneling Splittings in Water Clusters from Path Integral Molecular Dynamics. Journal of Physical Chemistry Letters, 2019, 10, 7300-7304.	2.1	32
150	Potential energy surfaces and coordinate dependence. Journal of Chemical Physics, 2000, 113, 3926-3927.	1.2	31
151	Energy Landscape and Global Optimization for a Frustrated Model Protein. Journal of Physical Chemistry B, 2011, 115, 11525-11529.	1.2	30
152	Hydroxyproline Ring Pucker Causes Frustration of Helix Parameters in the Collagen Triple Helix. Scientific Reports, 2015, 5, 12556.	1.6	30
153	New results for phase transitions from catastrophe theory. Journal of Chemical Physics, 2004, 120, 11090-11099.	1.2	29
154	Dynamics of a molecular glass former: Energy landscapes for diffusion in ortho-terphenyl. Journal of Chemical Physics, 2016, 145, 024505.	1.2	29
155	A stress tensor eigenvector projection space for the (H2O)5 potential energy surface. Chemical Physics Letters, 2017, 667, 25-31.	1.2	29
156	Energy Landscapes for the Aggregation of Aβ _{17–42} . Journal of the American Chemical Society, 2018, 140, 4018-4027.	6.6	29
157	An ab initio study of tunneling splittings in the water dimer. Journal of Chemical Physics, 2004, 120, 5993-5999.	1.2	28
158	Pathways for dissociative ethane chemisorption on Pt{110} (1×2) using density functional theory. Chemical Physics Letters, 2005, 413, 289-293.	1.2	28
159	Energetically favoured defects in dense packings of particles on spherical surfaces. Soft Matter, 2016, 12, 5708-5717.	1.2	28
160	Closed-shell structures and the building game. Chemical Physics Letters, 1987, 141, 478-484.	1.2	27
161	An ab initio study of tunneling splittings in the water trimer. Journal of Chemical Physics, 2005, 123, 044302.	1.2	27
162	Structure Prediction for Multicomponent Materials Using Biminima. Physical Review Letters, 2014, 113, 156102.	2.9	26

#	Article	IF	CITATIONS
163	Grand and Semigrand Canonical Basin-Hopping. Journal of Chemical Theory and Computation, 2016, 12, 902-909.	2.3	26
164	Evolved Minimal Frustration in Multifunctional Biomolecules. Journal of Physical Chemistry B, 2018, 122, 10989-10995.	1.2	26
165	Communication: Analysing kinetic transition networks for rare events. Journal of Chemical Physics, 2014, 141, 041104.	1.2	25
166	A conformational factorisation approach for estimating the binding free energies of macromolecules. Physical Chemistry Chemical Physics, 2014, 16, 2842-2853.	1.3	25
167	Design principles for Bernal spirals and helices with tunable pitch. Nanoscale, 2014, 6, 9448-9456.	2.8	25
168	Quasi-combinatorial energy landscapes for nanoalloy structure optimisation. Physical Chemistry Chemical Physics, 2015, 17, 28331-28338.	1.3	25
169	Transforming the Accuracy and Numerical Stability of ReaxFF Reactive Force Fields. Journal of Physical Chemistry Letters, 2019, 10, 7215-7223.	2.1	25
170	Super-Arrhenius Diffusion in an Undercooled Binary Lennard-Jones Liquid Results from a Quantifiable Correlation Effect. Physical Review Letters, 2006, 96, 057802.	2.9	24
171	Rovibrational transitions of the methane–water dimer from intermolecular quantum dynamical computations. Physical Chemistry Chemical Physics, 2016, 18, 22816-22826.	1.3	24
172	Archetypal energy landscapes: Dynamical diagnosis. Journal of Chemical Physics, 2005, 122, 024103.	1.2	23
173	Mapping Structural Changes in Electrode Materials: Application of the Hybrid Eigenvector-Following Density Functional Theory (DFT) Method to Layered Li _{0.5} MnO ₂ . Chemistry of Materials, 2015, 27, 5550-5561.	3.2	23
174	Coarse-graining the structure of polycyclic aromatic hydrocarbons clusters. Physical Chemistry Chemical Physics, 2016, 18, 13736-13740.	1.3	23
175	Improving Computational Predictions of Single-Stranded RNA Tetramers with Revised $\hat{I} \pm \hat{I}^3$ Torsional Parameters for the Amber Force Field. Journal of Physical Chemistry B, 2017, 121, 2989-2999.	1.2	23
176	Defining and quantifying frustration in the energy landscape: Applications to atomic and molecular clusters, biomolecules, jammed and glassy systems. Journal of Chemical Physics, 2017, 146, 124103.	1.2	23
177	Correlation effects and super-Arrhenius diffusion in binary Lennard-Jones mixtures. Physical Review B, 2006, 74, .	1.1	22
178	Analysis of cooperativity and localization for atomic rearrangements. Journal of Chemical Physics, 2004, 121, 6689-6697.	1.2	21
179	Exploring Energy Landscapes: Metrics, Pathways, and Normal-Mode Analysis for Rigid-Body Molecules. Journal of Chemical Theory and Computation, 2013, 9, 4026-4034.	2.3	21
180	Superposition Enhanced Nested Sampling. Physical Review X, 2014, 4, .	2.8	21

#	Article	IF	CITATIONS
181	Kinetic Transition Networks for the Thomson Problem and Smale's Seventh Problem. Physical Review Letters, 2016, 117, 028301.	2.9	21
182	Energy landscapes for a machine learning application to series data. Journal of Chemical Physics, 2016, 144, 124119.	1.2	21
183	Probing helical transitions in a DNA duplex. Physical Chemistry Chemical Physics, 2017, 19, 878-892.	1.3	21
184	Defining, Calculating, and Converging Observables of a Kinetic Transition Network. Journal of Chemical Theory and Computation, 2020, 16, 2661-2679.	2.3	21
185	Magic numbers and growth sequences of small face-centered-cubic and decahedral clusters. Chemical Physics Letters, 1995, 247, 339-347.	1.2	20
186	Comment on "Quasisaddles as relevant points of the potential energy surface in the dynamics of supercooled liquids―[J. Chem. Phys. 116, 10297 (2002)]. Journal of Chemical Physics, 2003, 118, 5263-5264.	1.2	20
187	Bond-selective energy redistribution in the chemisorption of CH3D and CD3H on Pt{110}-(1×2): A first-principles molecular dynamics study. Computational and Theoretical Chemistry, 2012, 990, 144-151.	1.1	20
188	Free energy basin-hopping. Chemical Physics Letters, 2015, 625, 1-4.	1.2	20
189	Computational Investigation of RNA C <u>U</u> G Repeats Responsible for Myotonic Dystrophy 1. Journal of Chemical Theory and Computation, 2015, 11, 4943-4958.	2.3	20
190	Optimal Alignment of Structures for Finite and Periodic Systems. Journal of Chemical Theory and Computation, 2017, 13, 4914-4931.	2.3	20
191	Energy Landscape for Fold-Switching in Regulatory Protein RfaH. Journal of Chemical Theory and Computation, 2019, 15, 731-742.	2.3	20
192	Affinity-Selected Bicyclic Peptide G-Quadruplex Ligands Mimic a Protein-like Binding Mechanism. Journal of the American Chemical Society, 2020, 142, 8367-8373.	6.6	20
193	Mechanisms for H ₂ Reduction on the PdO{101} Surface and the Pd{100}-(\hat{a} \tilde{s} \tilde{A} —) Tj ETQq1 1 0.76	84314 rgE 1.5	BT 19verlock
194	Energy landscapes and global thermodynamics for alanine peptides. Journal of Chemical Physics, 2013, 139, 121909.	1.2	19
195	Pathways for diffusion in the potential energy landscape of the network glass former SiO2. Journal of Chemical Physics, 2017, 147, 152726.	1.2	19
196	Energy landscapes of planar colloidal clusters. Nanoscale, 2014, 6, 10717-10726.	2.8	18
197	Energy Landscapes and Hybridization Pathways for DNA Hexamer Duplexes. Journal of Physical Chemistry Letters, 2019, 10, 6771-6779.	2.1	18
198	Energy Landscapes for Electronic Structure. Journal of Chemical Theory and Computation, 2021, 17, 151-169.	2.3	18

#	Article	IF	CITATIONS
199	Conformational Energy Landscape of the Ritonavir Molecule. Journal of Physical Chemistry B, 2016, 120, 4331-4340.	1.2	17
200	Self-assembly of colloidal magnetic particles: energy landscapes and structural transitions. Physical Chemistry Chemical Physics, 2016, 18, 26579-26585.	1.3	17
201	GPU-Accelerated Exploration of Biomolecular Energy Landscapes. Journal of Chemical Theory and Computation, 2016, 12, 6182-6191.	2.3	17
202	Transforming the Energy Landscape of a Coiled-Coil Peptide via Point Mutations. Journal of Chemical Theory and Computation, 2017, 13, 1468-1477.	2.3	17
203	Dynamics and thermodynamics of the coronene octamer described by coarse-grained potentials. Physical Chemistry Chemical Physics, 2017, 19, 1884-1895.	1.3	17
204	Diagnosing broken ergodicity using an energy fluctuation metric. Journal of Chemical Physics, 2005, 123, 134504.	1.2	16
205	Coupled linear and rotary motion in supramolecular helix handedness inversion. Soft Matter, 2011, 7, 2325.	1.2	16
206	Communication: Certifying the potential energy landscape. Journal of Chemical Physics, 2013, 138, 171101.	1.2	16
207	Chemistry, Geometry, and Defects in Two Dimensions. ACS Nano, 2014, 8, 1081-1085.	7.3	16
208	Loss surface of XOR artificial neural networks. Physical Review E, 2018, 97, 052307.	0.8	16
209	Identifying mechanistically distinct pathways in kinetic transition networks. Journal of Chemical Physics, 2019, 151, 124101.	1.2	16
210	Rare events and first passage time statistics from the energy landscape. Journal of Chemical Physics, 2020, 153, 134115.	1.2	16
211	Rearrangements of Water Dimer and Hexamer. Springer Series in Cluster Physics, 1999, , 86-110.	0.3	16
212	When do gradient optimisations converge to saddle points?. Chemical Physics Letters, 1992, 190, 447-452.	1.2	15
213	Reaction path zeroâ€point energy from diffusion Monte Carlo calculations. Journal of Chemical Physics, 1995, 102, 1592-1596.	1.2	15
214	A left-handed building block self-assembles into right- and left-handed helices. RSC Advances, 2013, 3, 12905.	1.7	15
215	Communication: Newton homotopies for sampling stationary points of potential energy landscapes. Journal of Chemical Physics, 2014, 141, 121104.	1.2	15
216	Exploring energy landscapes: from molecular to mesoscopic systems. Physical Chemistry Chemical Physics, 2014, 16, 5014-5025.	1.3	15

#	Article	IF	CITATIONS
217	Energy landscapes for a machine-learning prediction of patient discharge. Physical Review E, 2016, 93, 063310.	0.8	15
218	What Makes Telomeres Unique?. Journal of Physical Chemistry B, 2017, 121, 2207-2219.	1.2	15
219	Properties of kinetic transition networks for atomic clusters and glassy solids. Physical Chemistry Chemical Physics, 2017, 19, 25498-25508.	1.3	15
220	From sticky-hard-sphere to Lennard-Jones-type clusters. Physical Review E, 2018, 97, 043309.	0.8	15
221	Mutational Basin-Hopping: Combined Structure and Sequence Optimization for Biomolecules. Journal of Physical Chemistry Letters, 2018, 9, 6169-6173.	2.1	15
222	Structural transitions in the RNA 7SK 5′ hairpin and their effect on HEXIM binding. Nucleic Acids Research, 2020, 48, 373-389.	6.5	15
223	Supercooled Lennard-Jones liquids and glasses: a kinetic Monte Carlo approach. Journal of Non-Crystalline Solids, 2004, 336, 218-222.	1.5	14
224	Exploiting the potential energy landscape to sample free energy. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2015, 5, 273-289.	6.2	14
225	Structural analysis of high-dimensional basins of attraction. Physical Review E, 2016, 94, 031301.	0.8	14
226	Impurity effects on solid–solid transitions in atomic clusters. Nanoscale, 2016, 8, 18326-18340.	2.8	14
227	Preventing Structural Rearrangements on Battery Cycling: A First-Principles Investigation of the Effect of Dopants on the Migration Barriers in Layered Li _{0.5} MnO ₂ . Journal of Physical Chemistry C, 2016, 120, 19521-19530.	1.5	14
228	Energy Landscape of the Designed Protein Top7. Journal of Physical Chemistry B, 2018, 122, 12282-12291.	1.2	14
229	Efficient and exact sampling of transition path ensembles on Markovian networks. Journal of Chemical Physics, 2020, 153, 024121.	1.2	14
230	Interpolation schemes for peptide rearrangements. Journal of Chemical Physics, 2010, 132, 054101.	1.2	13
231	Rate constants, timescales, and free energy barriers. Journal of Non-Equilibrium Thermodynamics, 2016, 41, 13-18.	2.4	13
232	Rearrangements and tunneling in water clusters. Advances in Molecular Vibrations and Collision Dynamics, 1998, , 365-396.	0.8	13
233	Archetypal landscapes for deep neural networks. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21857-21864.	3.3	12
234	Nearly reducible finite Markov chains: Theory and algorithms. Journal of Chemical Physics, 2021, 155, 140901.	1.2	12

#	Article	IF	CITATIONS
235	Structure and energetics of model symmetric and asymmetric decahedra. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1992, 65, 1079-1096.	0.6	11
236	A survey of the potential energy surface for the (benzene)13 cluster. Physical Chemistry Chemical Physics, 2011, 13, 21362.	1.3	11
237	The potential energy landscape for crystallisation of a Lennard-Jones fluid. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016, 074001.	0.9	11
238	Effects of random pinning on the potential energy landscape of a supercooled liquid. Journal of Chemical Physics, 2018, 149, 114503.	1.2	11
239	Predicting Pathways between Distant Configurations for Biomolecules. Journal of Chemical Theory and Computation, 2018, 14, 4271-4278.	2.3	11
240	Dynamics of an adenine-adenine RNA conformational switch from discrete path sampling. Journal of Chemical Physics, 2019, 150, 125101.	1.2	11
241	A well-behaved theoretical framework for ReaxFF reactive force fields. Journal of Chemical Physics, 2020, 153, 021102.	1.2	11
242	Protein energy landscape exploration with structure-based models. Current Opinion in Structural Biology, 2020, 64, 145-151.	2.6	11
243	Crystal Structure Prediction for Benzene Using Basin-Hopping Global Optimization. Journal of Physical Chemistry A, 2021, 125, 3776-3784.	1.1	11
244	Optimal dimensionality reduction of Markov chains using graph transformation. Journal of Chemical Physics, 2020, 153, 244108.	1.2	11
245	The Energy Landscape Perspective: Encoding Structure and Function for Biomolecules. Frontiers in Molecular Biosciences, 2022, 9, 820792.	1.6	11
246	Superposition-Enhanced Estimation of Optimal Temperature Spacings for Parallel Tempering Simulations. Journal of Chemical Theory and Computation, 2014, 10, 5599-5605.	2.3	10
247	Exploring the potential energy landscape of the Thomson problem via Newton homotopies. Journal of Chemical Physics, 2015, 142, 194113.	1.2	10
248	Energy landscapes and persistent minima. Journal of Chemical Physics, 2016, 144, 054109.	1.2	10
249	QTAIM and stress tensor interpretation of the (H ₂ O) ₅ potential energy surface. Journal of Computational Chemistry, 2016, 37, 2712-2721.	1.5	10
250	Intrinsically Disordered Landscapes for Human CD4 Receptor Peptide. Journal of Physical Chemistry B, 2018, 122, 11906-11921.	1.2	10
251	Analysis of the Ub to Ub-CR Transition in Ubiquitin. Biochemistry, 2018, 57, 6180-6186.	1.2	10
252	Path Integral Energy Landscapes for Water Clusters. Journal of Chemical Theory and Computation, 2019, 15, 33-42.	2.3	10

#	Article	IF	CITATIONS
253	THE ENERGY LANDSCAPE AS A COMPUTATIONAL TOOL. , 2008, , 321-330.		10
254	Structure and dynamics of model Ag and Pt clusters. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1993, 26, 258-260.	1.0	9
255	Markov state modeling and dynamical coarse-graining via discrete relaxation path sampling. Journal of Chemical Physics, 2015, 143, 044119.	1.2	9
256	Terahertz VRT spectroscopy of the water hexamer-d12 prism: Dramatic enhancement of bifurcation tunneling upon librational excitation. Journal of Chemical Physics, 2018, 148, .	1.2	9
257	The Contribution of Backbone Electrostatic Repulsion to DNA Mechanical Properties is Length-Scale-Dependent. Journal of Physical Chemistry Letters, 2019, 10, 4829-4835.	2.1	9
258	A multifunnel energy landscape encodes the competing α-helix and β-hairpin conformations for a designed peptide. Physical Chemistry Chemical Physics, 2020, 22, 1359-1370.	1.3	9
259	Dynamical Signatures of Multifunnel Energy Landscapes. Journal of Physical Chemistry Letters, 2022, 13, 6349-6358.	2.1	9
260	Design of a Kagome lattice from soft anisotropic particles. Soft Matter, 2015, 11, 6663-6668.	1.2	8
261	Atomic clusters with addressable complexity. Journal of Chemical Physics, 2017, 146, 054306.	1.2	8
262	Structure and Thermodynamics of Metal Clusters on Atomically Smooth Substrates. Journal of Physical Chemistry Letters, 2017, 8, 5402-5407.	2.1	8
263	Nested Basin-Sampling. Journal of Chemical Theory and Computation, 2019, 15, 6865-6881.	2.3	8
264	Go-Kit: A Tool To Enable Energy Landscape Exploration of Proteins. Journal of Chemical Information and Modeling, 2019, 59, 1703-1708.	2.5	8
265	Numerical analysis of first-passage processes in finite Markov chains exhibiting metastability. Physical Review E, 2021, 104, 015301.	0.8	8
266	Minimal Design Principles for Icosahedral Virus Capsids. ACS Nano, 2021, 15, 14873-14884.	7.3	8
267	Evaluating Geometric Definitions of Stacking for RNA Dinucleoside Monophosphates Using Molecular Mechanics Calculations. Journal of Chemical Theory and Computation, 2022, 18, 3637-3653.	2.3	8
268	Geometry optimization for peptides and proteins: Comparison of Cartesian and internal coordinates. Journal of Chemical Physics, 2007, 127, 234105.	1.2	7
269	Communication: Optimal parameters for basin-hopping global optimization based on Tsallis statistics. Journal of Chemical Physics, 2014, 141, 071101.	1.2	7
270	An inversion-relaxation approach for sampling stationary points of spin model Hamiltonians. Journal of Chemical Physics, 2014, 140, 194104.	1.2	7

#	Article	IF	CITATIONS
271	Structure, Thermodynamics, and Folding Pathways for a Tryptophan Zipper as a Function of Local Rigidification. Journal of Chemical Theory and Computation, 2016, 12, 6109-6117.	2.3	7
272	Machine learning prediction for classification of outcomes in local minimisation. Chemical Physics Letters, 2017, 667, 158-164.	1.2	7
273	Machine learning landscapes and predictions for patient outcomes. Royal Society Open Science, 2017, 4, 170175.	1.1	7
274	Energy Landscapes of Mini-Dumbbell DNA Octanucleotides. Journal of Chemical Theory and Computation, 2018, 14, 3870-3876.	2.3	6
275	Terahertz VRT Spectroscopy of the Water Hexamer-h12 Cage: Dramatic Libration-Induced Enhancement of Hydrogen Bond Tunneling Dynamics. Journal of Physical Chemistry A, 2018, 122, 7421-7426.	1.1	6
276	Flip rearrangement in the water pentamer: Analysis of electronic structure. International Journal of Quantum Chemistry, 2020, 120, e26124.	1.0	6
277	Systematic Evaluation of ReaxFF Reactive Force Fields for Biochemical Applications. Journal of Chemical Theory and Computation, 2021, 17, 497-514.	2.3	6
278	Chaotic dynamics near steep transition states. Molecular Physics, 2012, 110, 1839-1848.	0.8	5
279	Beryllium cluster cages endohedrally doped by hydrogen: H ₂ @Be _n (8 â‰)#Tj ETQq1 1	0.784314 1.0	l rgBT /Overlo
280	Certification and the potential energy landscape. Journal of Chemical Physics, 2014, 140, 224114.	1.2	5
281	Proton Transfer Pathways, Energy Landscape, and Kinetics in Creatine–Water Systems. Journal of Physical Chemistry B, 2014, 118, 1969-1975.	1.2	5
282	Energy landscapes of a hairpin peptide including NMR chemical shift restraints. Physical Chemistry Chemical Physics, 2015, 17, 20250-20258.	1.3	5
283	Designing hierarchical molecular complexity: icosahedra of addressable icosahedra. Molecular Physics, 2018, 116, 2954-2964.	0.8	5
284	Exotic bilayer crystals in a strong magnetic field. Physical Review B, 2018, 97, .	1.1	5
285	Energy Landscapes of Carbon Clusters from Tight-Binding Quantum Potentials. Journal of Physical Chemistry A, 2022, 126, 2342-2352.	1.1	5
286	Potential energy landscapes of tetragonal pyramid molecules. Chemical Physics Letters, 2016, 664, 5-9.	1.2	4
287	Kinetics of Molecular Diffusion and Self-Assembly: Glycine on Cu{110}. Journal of Physical Chemistry C, 2018, 122, 782-797.	1.5	4
288	Energy Landscape for the Membrane Fusion Pathway in Influenza A Hemagglutinin From Discrete Path Sampling. Frontiers in Chemistry, 2020, 8, 575195.	1.8	4

#	Article	IF	CITATIONS
289	Fragility and correlated dynamics in supercooled liquids. Journal of Chemical Physics, 2020, 153, 124501.	1.2	4
290	Counterionâ€Trappedâ€Molecules: From High Polarity and Enriched IR Spectra to Induced Isomerization. ChemPhysChem, 2020, 21, 348-355.	1.0	4
291	Graph transformation and shortest paths algorithms for finite Markov chains. Physical Review E, 2021, 103, 063306.	0.8	4
292	Energy landscapes for a modified repulsive Weeks–Chandler–Andersen potential. Journal of Physics Condensed Matter, 2022, 34, 034004.	0.7	4
293	Elucidating the solution structure of the K-means cost function using energy landscape theory. Journal of Chemical Physics, 2022, 156, 054109.	1.2	4
294	Analysis of the Contrasting Pathogenicities Induced by the D222G Mutation in 1918 and 2009 Pandemic Influenza A Viruses. Journal of Chemical Theory and Computation, 2015, 11, 2307-2314.	2.3	3
295	Exploiting sparsity in free energy basin-hopping. Chemical Physics Letters, 2017, 685, 288-293.	1.2	3
296	Computational Studies of the Mechanical Stability for Single-Strand Break DNA. Journal of Physical Chemistry B, 2018, 122, 8166-8173.	1.2	3
297	Computational Investigation of RNA A-Bulges Related to the Microtubule-Associated Protein Tau Causing Frontotemporal Dementia and Parkinsonism. Journal of Physical Chemistry B, 2019, 123, 57-65.	1.2	3
298	Multifunnel Energy Landscapes for Phosphorylated Translation Repressor 4E-BP2 and Its Mutants. Journal of Chemical Theory and Computation, 2020, 16, 800-810.	2.3	3
299	Energy Landscapes of Deoxyxylo- and Xylo-Nucleic Acid Octamers. Journal of Physical Chemistry B, 2020, 124, 4062-4068.	1.2	3
300	Development of ReaxFF Reactive Force Field for Aqueous Iron–Sulfur Clusters with Applications to Stability and Reactivity in Water. Journal of Chemical Information and Modeling, 2021, 61, 1204-1214.	2.5	3
301	Surface Chirality Influences Molecular Rotation upon Desorption. Physical Review Letters, 2021, 126, 166101.	2.9	3
302	Energy Landscapes for Base-Flipping in a Model DNA Duplex. Journal of Physical Chemistry B, 2022, 126, 3012-3028.	1.2	3
303	Exploring Energy Landscapes with Monte Carlo Methods. AIP Conference Proceedings, 2003, , .	0.3	2
304	Energy Landscapes, Self-Assembly and Viruses. Journal of Theoretical Medicine, 2005, 6, 107-110.	0.5	2
305	Morphological analysis of chiral rod clusters from a coarse-grained single-site chiral potential. Soft Matter, 2019, 15, 8147-8155.	1.2	2
306	Improving double-ended transition state searches for soft-matter systems. Journal of Chemical Physics, 2020, 153, 034104.	1.2	2

#	Article	IF	CITATIONS
307	The energy landscapes of bidisperse particle assemblies on a sphere. Soft Matter, 2021, 17, 9019-9027.	1.2	2
308	Side-Chain Polarity Modulates the Intrinsic Conformational Landscape of Model Dipeptides. Journal of Physical Chemistry B, 2021, 125, 5809-5822.	1.2	2
309	Rotational Dynamics of Desorption: Methane and Ethane at Stepped and Kinked Platinum Surfaces. Journal of Physical Chemistry C, 2021, 125, 27938-27948.	1.5	2
310	Equilibrium Molecular Thermodynamics from Kirkwood Sampling. Journal of Physical Chemistry B, 2015, 119, 6155-6169.	1.2	1
311	How to make a porphyrin flip: dynamics of asymmetric porphyrin oligomers. Physical Chemistry Chemical Physics, 2015, 17, 27094-27102.	1.3	1
312	Trapping of hydrogen atoms inside small beryllium clusters and their ions. Chemical Physics Letters, 2016, 659, 282-288.	1.2	1
313	Dynamical properties of two- and three-dimensional colloidal clusters of six particles. Physical Chemistry Chemical Physics, 2016, 18, 12725-12732.	1.3	1
314	Energy landscapes and dynamics of glycine on Cu(110). Physical Chemistry Chemical Physics, 2017, 19, 16600-16605.	1.3	1
315	Perspective: new insights from loss function landscapes of neural networks. Machine Learning: Science and Technology, 2020, 1, 023002.	2.4	1
316	On the capacity and superposition of minima in neural network loss function landscapes. Machine Learning: Science and Technology, 2022, 3, 025004.	2.4	1
317	Response to "Comment on â€̃Exploring the potential energy landscape of the Thomson problem via Newton homotopiesâ€â€™ [J. Chem. Phys. 143, 247101 (2015)]. Journal of Chemical Physics, 2015, 143, 24710.	2. ^{1.2}	0
318	Characterising the area under the curve loss function landscape. Machine Learning: Science and Technology, 2022, 3, 015019.	2.4	0
319	The energy landscape perspective: cutting a Gordian knot. Frontiers of Nanoscience, 2022, , 1-18.	0.3	0