Cristina Chuck-HernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4098020/publications.pdf

Version: 2024-02-01

42 971 papers citations

43

all docs

citations h-index g-index

43 43 1163
docs citations times ranked citing authors

18

476904

29

#	Article	IF	CITATIONS
1	Impact of Hydrolysis, Acetylation or Succinylation on Functional Properties of Plant-Based Proteins: Patents, Regulations, and Future Trends. Processes, 2022, 10, 283.	1.3	11
2	Optimization of Soybean Protein Extraction Using By-Products from NaCl Electrolysis as an Application of the Industrial Symbiosis Concept. Applied Sciences (Switzerland), 2022, 12, 3113.	1.3	6
3	Importance of Downstream Processing of Natural Astaxanthin for Pharmaceutical Application. Frontiers in Chemical Engineering, 2021, 2, .	1.3	21
4	Methods for the Modification and Evaluation of Cereal Proteins for the Substitution of Wheat Gluten in Dough Systems. Foods, 2021, 10, 118.	1.9	14
5	Study of the Electrooxidation of a Zinc Concentrate. Materials, 2021, 14, 2868.	1.3	2
6	Changes induced by high hydrostatic pressure in acidified and nonâ€acidified milk during Oaxaca cheese production. International Journal of Food Science and Technology, 2021, 56, 4639-4649.	1.3	1
7	Advances and prospective applications of 3D food printing for health improvement and personalized nutrition. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5722-5741.	5. 9	37
8	Physicochemical and Nutritional Evaluation of Bread Incorporated with Ayocote Bean (Phaseolus) Tj ETQq0 0 0 r	gBŢ <u>.¦</u> Over	lock 10 Tf 50 4
9	Comparison of Physicochemical, Functional and Nutritional Properties between Proteins of Soybean and a Novel Mixture of Soybean-Maize. Applied Sciences (Switzerland), 2020, 10, 6998.	1.3	6
10	Legumes Protease Inhibitors as Biopesticides and Their Defense Mechanisms against Biotic Factors. International Journal of Molecular Sciences, 2020, 21, 3322.	1.8	27
11	Effect of Ultrasound Application on Protein Yield and Fate of Alkaloids during Lupin Alkaline Extraction Process. Biomolecules, 2020, 10, 292.	1.8	28
12	Nutritional content of edible grasshopper (<i>Sphenarium purpurascens</i>) fed on alfalfa (<i>Medicago sativa</i>) and maize (<i>Zea mays</i>). CYTA - Journal of Food, 2020, 18, 257-263.	0.9	24
13	Novel Food Ingredients for Food Security. , 2019, , 369-375.		2
14	Protein Isolates From Meat Processing By-Products. , 2019, , 131-162.		3
15	Selenium in Germinated Chickpea (Cicer arietinum L.) Increases the Stability of Its Oil Fraction. Plants, 2019, 8, 113.	1.6	10
16	Structural prope rties, functional evaluation, and <i>in vitro</i> protein digestibility of black and yellow quinoa (<i>Chenopodium petiolare</i>) protein isolates. CYTA - Journal of Food, 2019, 17, 864-872.	0.9	7
17	Effects of Post Anthesis Foliar Application of Sodium Selenite to Soybeans (Glycine max): Lipid Composition and Oil Stability. Biomolecules, 2019, 9, 772.	1.8	2
18	Development and Structure of the Corn Kernel. , 2019, , 147-163.		15

#	Article	IF	CITATIONS
19	Food Uses of Lime-Cooked Corn With Emphasis in Tortillas and Snacks. , 2019, , 469-500.		9
20	Phosphoesterification of soybean and peanut proteins with sodium trimetaphosphate (STMP): Changes in structure to improve functionality for food applications. Food Chemistry, 2018, 260, 299-305.	4.2	49
21	Inactivation Methods of Trypsin Inhibitor in Legumes: A Review. Journal of Food Science, 2018, 83, 17-29.	1.5	149
22	Hydrostatic High-Pressure Post-Processing of Specimens Fabricated by DLP, SLA, and FDM: An Alternative for the Sterilization of Polymer-Based Biomedical Devices. Materials, 2018, 11, 2540.	1.3	22
23	Effect of thermal processing and reducing agents on trypsin inhibitor activity and functional properties of soybean and chickpea protein concentrates. LWT - Food Science and Technology, 2018, 98, 629-634.	2.5	32
24	Deodorization of <i>Arthrospira platensis</i> biomass for further scaleâ€up food applications. Journal of the Science of Food and Agriculture, 2017, 97, 5123-5130.	1.7	22
25	Microwave and Ultrasound to Enhance Protein Extraction from Peanut Flour under Alkaline Conditions: Effects in Yield and Functional Properties of Protein Isolates. Food and Bioprocess Technology, 2017, 10, 543-555.	2.6	129
26	Functional Effects of Soybean Concentrates Obtained from Sprouted Seeds Enriched in Selenium in Wheat Breadmaking. Cereal Chemistry, 2017, 94, 740-745.	1.1	6
27	Protein recovery from skipjack tuna (Katsuwonus pelamis) wash water with different pH and temperature combinations. Revista Mexicana De Ingeniera Quimica, 2017, 16, 91-99.	0.2	3
28	Non-destructive Assessment of Guava (Psidium guajava L.) Maturity and Firmness Based on Mechanical Vibration Response. Food and Bioprocess Technology, 2016, 9, 1471-1480.	2.6	23
29	Molecular structure characteristics, functional parameters and ⟨i⟩inÂvitro⟨/i⟩ protein digestion of pressureâ€cooked soya bean flours with different amounts of water. International Journal of Food Science and Technology, 2015, 50, 2490-2497.	1.3	9
30	Yield and Textural Characteristics of Panela Cheeses Produced with Dairyâ€Vegetable Protein (Soybean) Tj ETQq	0	Overlock 10
31	Physicochemical and Functional Properties of Vegetable and Cereal Proteins as Potential Sources of Novel Food Ingredients. Food Technology and Biotechnology, 2015, 53, 269-277.	0.9	28
32	Evaluation of the functionality of five different soybean proteins in yeast-leavened pan breads. Journal of Cereal Science, 2015, 64, 63-69.	1.8	24
33	Functionality and Organoleptic Properties of Maize Tortillas Enriched with Five Different Soybean Proteins. Cereal Chemistry, 2015, 92, 341-349.	1.1	9
34	Evaluation of the Functionality of Five Different Soybean Proteins in Hotâ€Press Wheat Flour Tortillas. Cereal Chemistry, 2015, 92, 98-104.	1.1	11
35	Fate of free amino nitrogen during liquefaction and yeast fermentation of maize and sorghums differing in endosperm texture. Food and Bioproducts Processing, 2013, 91, 46-53.	1.8	15
36	Susceptibility of different types of sorghums during storage to Sitophilus zeamais Motschulsky. Journal of Stored Products Research, 2013, 54, 34-40.	1.2	7

#	Article	IF	CITATIONS
37	Comparison of the processing and quality of tortillas produced from larger grain borer Prostephanus truncatus (Horn.) resistant and susceptible maize genotypes. Journal of Stored Products Research, 2013, 55, 99-105.	1.2	6
38	Addition of protease during starch liquefaction affects free amino nitrogen, fusel alcohols and ethanol production of fermented maize and whole and decorticated sorghum mashes. Biochemical Engineering Journal, 2012, 67, 1-9.	1.8	25
39	Conversion into bioethanol of insect (Sitophilus zeamais Motschulsky), mold (Aspergillus flavus Link) and sprout-damaged maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench). Journal of Cereal Science, 2012, 55, 285-292.	1.8	11
40	Bioconversion into ethanol of decorticated red sorghum (Sorghum bicolor L. Moench) supplemented with its phenolic extract or spent bran. Biotechnology Letters, 2012, 34, 97-102.	1.1	3
41	Evaluation of bioethanol production from five different varieties of sweet and forage sorghums (Sorghum bicolor (L) Moench). Industrial Crops and Products, 2011, 33, 611-616.	2.5	93
42	Production of bioethanol from steam-flaked sorghum and maize. Journal of Cereal Science, 2009, 50, 131-137.	1.8	37