List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4097721/publications.pdf Version: 2024-02-01

<u>7ниномс Гли</u>

#	Article	IF	CITATIONS
1	A poly(1,3-dioxolane) based deep-eutectic polymer electrolyte for high performance ambient polymer lithium battery. Materials Today Physics, 2022, 22, 100620.	2.9	10
2	A novel intrinsic flame-retardant and flexible polyurethane solid electrolyte for lithium batteries. Materials Chemistry and Physics, 2022, 279, 125763.	2.0	11
3	Insight into Superior Electrochemical Performance of 4.5 V High-Voltage LiCoO ₂ Using a Robust Polyacrylonitrile Binder. ACS Applied Energy Materials, 2022, 5, 3072-3080.	2.5	2
4	High performance polyimide-based separator for 4.5V high voltage LiCoO2 battery with superior safety. Materials Chemistry and Physics, 2022, 282, 125975.	2.0	7
5	A delicately designed functional binder enabling in situ construction of <scp>3D</scp> crossâ€linking robust network for highâ€performance Si/graphite composite anode. Journal of Polymer Science, 2022, 60, 1835-1844.	2.0	8
6	Recent advances of non-lithium metal anode materials for solid-state lithium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 16761-16778.	5.2	23
7	Flame-retardant polyurethane elastomer based on aluminum salt of monomethylphosphinate. Journal of Thermal Analysis and Calorimetry, 2021, 143, 2953-2961.	2.0	7
8	Rigidity Bridging Flexibility to Harmonize Three Excitedâ€State Deactivation Pathways for NIRâ€Ilâ€Fluorescentâ€Imagingâ€Guided Phototherapy. Advanced Healthcare Materials, 2021, 10, e2101003.	3.9	31
9	A novel conjugated heterotriangulene polymer for high performance organic lithium-ion battery. Dyes and Pigments, 2021, 191, 109352.	2.0	1
10	Facile and Powerful In Situ Polymerization Strategy for Sulfur-Based All-Solid Polymer Electrolytes in Lithium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 34274-34281.	4.0	14
11	Li0.35La0.55TiO3 nanofibers filled poly (ethylene carbonate) composite electrolyte with enhanced ion conduction and electrochemical stability. Thin Solid Films, 2021, 734, 138835.	0.8	6
12	Layered Tin Phosphide Composites as Promising Anodes for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 11306-11313.	2.5	10
13	AC Electric-Field Assistant Architecting Ordered Network of Ni@PS Microspheres in Epoxy Resin to Enhance Conductivity. Polymers, 2021, 13, 3826.	2.0	4
14	Electric fieldâ€driven preparation of elastomer/plastic nanoparticles gradient films with enhanced damping property. Journal of Applied Polymer Science, 2020, 137, 48401.	1.3	1
15	A novel polyphosphonate flame-retardant additive towards safety-reinforced all-solid-state polymer electrolyte. Materials Chemistry and Physics, 2020, 239, 122014.	2.0	35
16	Thermal Stability and Mechanical Response of Bi ₂ Te ₃ -Based Materials for Thermoelectric Applications. ACS Applied Energy Materials, 2020, 3, 2078-2089.	2.5	56
17	Visible light-mediated atom transfer radical addition to styrene: base controlled selective (phenylsulfonyl)difluoromethylation. Organic Chemistry Frontiers, 2020, 7, 617-621.	2.3	13
18	Unraveling the Critical Role of Melt-Spinning Atmosphere in Enhancing the Thermoelectric Performance of p-Type Bi _{0.52} Sb _{1.48} Te ₃ Alloys. ACS Applied Materials & Interfaces, 2020, 12, 36186-36195.	4.0	28

ZHIHONG LIU

#	Article	IF	CITATIONS
19	Recent advances in nanostructured metal phosphides as promising anode materials for rechargeable batteries. Journal of Materials Chemistry A, 2020, 8, 19113-19132.	5.2	61
20	Novel Sodium–Poly(tartaric acid)Borate-Based Single-Ion Conducting Polymer Electrolyte for Sodium–Metal Batteries. ACS Applied Energy Materials, 2020, 3, 10053-10060.	2.5	34
21	Contactless electric–field driven Z-alignment of ceramic nanoparticles in polymer electrolyte to enhance ionic conductivity. Materials and Design, 2020, 192, 108753.	3.3	10
22	Advanced Catalytic Materials for Ethanol Oxidation in Direct Ethanol Fuel Cells. Catalysts, 2020, 10, 166.	1.6	95
23	Effectively suppressing lithium dendrite growth <i>via</i> an es-LiSPCE single-ion conducting nano fiber membrane. Journal of Materials Chemistry A, 2020, 8, 2518-2528.	5.2	33
24	In-situ generation of high performance thiol-conjugated solid polymer electrolytes via reliable thiol-acrylate click chemistry. Journal of Power Sources, 2020, 456, 228024.	4.0	20
25	Low temperature performance enhancement of high-safety Lithium–Sulfur battery enabled by synergetic adsorption and catalysis. Electrochimica Acta, 2020, 353, 136470.	2.6	14
26	Graphdiyne-Modified Polyimide Separator: A Polysulfide-Immobilizing Net Hinders the Shuttling of Polysulfides in Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2019, 11, 35738-35745.	4.0	34
27	PACAP stimulates insulin secretion by PAC1 receptor and ion channels in Î ² -cells. Cellular Signalling, 2019, 61, 48-56.	1.7	13
28	Synergy of Singleâ€ion Conductive and Thermoâ€responsive Copolymer Hydrogels Achieving Antiâ€Arrhenius Ionic Conductivity. Chemistry - an Asian Journal, 2019, 14, 1404-1408.	1.7	9
29	Lithium Batteries: Single-Ion Conducting Electrolyte Based on Electrospun Nanofibers for High-Performance Lithium Batteries (Adv. Energy Mater. 10/2019). Advanced Energy Materials, 2019, 9, 1970029.	10.2	2
30	A facile non-solvent induced phase separation process for preparation of highly porous polybenzimidazole separator for lithium metal battery application. Scientific Reports, 2019, 9, 19320.	1.6	24
31	Singleâ€Ion Conducting Electrolyte Based on Electrospun Nanofibers for Highâ€Performance Lithium Batteries. Advanced Energy Materials, 2019, 9, 1803422.	10.2	109
32	Electric-Field-Directed Parallel Alignment Architecting 3D Lithium-Ion Pathways within Solid Composite Electrolyte. ACS Applied Materials & Interfaces, 2018, 10, 15691-15696.	4.0	63
33	Highly porous single ion conducting polymer electrolyte for advanced lithium-ion batteries via facile water-induced phase separation process. Journal of Membrane Science, 2018, 568, 22-29.	4.1	34
34	Highly porous single-ion conductive composite polymer electrolyte for high performance Li-ion batteries. Journal of Power Sources, 2018, 397, 79-86.	4.0	37
35	Dendriteâ€Free Lithium Deposition via Flexibleâ€Rigid Coupling Composite Network for LiNi _{0.5} Mn _{1.5} O ₄ /Li Metal Batteries. Small, 2018, 14, e1802244.	5.2	83
36	Electric-field-induced out-of-plane alignment of clay in poly(dimethylsiloxane) with enhanced anisotropic thermal conductivity and mechanical properties. Composites Science and Technology, 2018, 165, 39-47.	3.8	21

ZHIHONG LIU

#	Article	IF	CITATIONS
37	Ionic liquid-based electrolyte with dual-functional LiDFOB additive toward high-performance LiMn2O4 batteries. Ionics, 2017, 23, 1399-1406.	1.2	12
38	High-voltage and free-standing poly(propylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 712 Td (carbonate)/Li _{ composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. Journal of Materials Chemistry A, 2017, 5, 4940-4948.}	6.755.2	373 Szakisztek
39	Sustainable and Superior Heat-Resistant Alginate Nonwoven Separator of LiNi _{0.5} Mn _{1.5} O ₄ /Li Batteries Operated at 55 °C. ACS Applied Materials & Interfaces, 2017, 9, 3694-3701.	4.0	30
40	Novel Design Concepts of Efficient Mgâ€lon Electrolytes toward Highâ€Performance Magnesium–Selenium and Magnesium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1602055.	10.2	231
41	Facile and Reliable in Situ Polymerization of Poly(Ethyl Cyanoacrylate)-Based Polymer Electrolytes toward Flexible Lithium Batteries. ACS Applied Materials & Interfaces, 2017, 9, 8737-8741.	4.0	122
42	An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries. Journal of Materials Chemistry A, 2017, 5, 11124-11130.	5.2	89
43	A Superior Polymer Electrolyte with Rigid Cyclic Carbonate Backbone for Rechargeable Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 17897-17905.	4.0	146
44	Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries. Electrochimica Acta, 2017, 225, 151-159.	2.6	128
45	High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self atalyzed Strategy toward Facile Synthesis. Advanced Science, 2017, 4, 1700174.	5.6	155
46	Nitrogenâ€Doped Porous Carbon as Highâ€Performance Cathode Material for Lithiumâ€Sulfur Battery. ChemistrySelect, 2017, 2, 11030-11034.	0.7	13
47	A Strategy to Make High Voltage LiCoO ₂ Compatible with Polyethylene Oxide Electrolyte in All-Solid-State Lithium Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A3454-A3461.	1.3	116
48	Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic) Tj ETQq0 High-Voltage Batteries. ACS Applied Materials & Interfaces, 2017, 9, 41462-41472.	0 0 rgBT / 4.0	Overlock 10 63
49	In Situ Formation of Polysulfonamide Supported Poly(ethylene glycol) Divinyl Ether Based Polymer Electrolyte toward Monolithic Sodium Ion Batteries. Small, 2017, 13, 1601530.	5.2	58
50	In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO ₂ Lithium Batteries. Advanced Science, 2017, 4, 1600377.	5.6	377
51	Progress in nitrile-based polymer electrolytes for high performance lithium batteries. Journal of Materials Chemistry A, 2016, 4, 10070-10083.	5.2	243
52	Electrospun melamine resin-based multifunctional nonwoven membrane for lithium ion batteries at the elevated temperatures. Journal of Power Sources, 2016, 327, 196-203.	4.0	40
53	All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials, 2016, 5, 139-164.	9.5	768
54	Interfacial Study on Solid Electrolyte Interphase at Li Metal Anode: Implication for Li Dendrite Growth. Journal of the Electrochemical Society, 2016, 163, A592-A598.	1.3	180

#	Article	IF	CITATIONS
55	A sustainable and rigid-flexible coupling cellulose-supported poly(propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries. Electrochimica Acta, 2016, 188, 23-30.	2.6	102
56	A high-voltage poly(methylethyl α-cyanoacrylate) composite polymer electrolyte for 5 V lithium batteries. Journal of Materials Chemistry A, 2016, 4, 5191-5197.	5.2	76
57	Safetyâ€Reinforced Poly(Propylene Carbonate)â€Based Allâ€Solidâ€State Polymer Electrolyte for Ambientâ€Temperature Solid Polymer Lithium Batteries. Advanced Energy Materials, 2015, 5, 1501082.	10.2	532
58	Methylamineâ€Gasâ€Induced Defectâ€Healing Behavior of CH ₃ NH ₃ PbI ₃ Thin Films for Perovskite Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 9705-9709.	7.2	377
59	A Polyborate Coated Cellulose Composite Separator for High Performance Lithium Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A834-A838.	1.3	32
60	Influence of PEG 6000 on gallium oxide (Ga2O3) polymorphs and photocatalytic properties. Science China Chemistry, 2015, 58, 532-538.	4.2	10
61	Rigid–Flexible Coupling High Ionic Conductivity Polymer Electrolyte for an Enhanced Performance of LiMn ₂ O ₄ /Graphite Battery at Elevated Temperature. ACS Applied Materials & Interfaces, 2015, 7, 4720-4727.	4.0	108
62	Strategies for improving the cyclability and thermo-stability of LiMn ₂ O ₄ -based batteries at elevated temperatures. Journal of Materials Chemistry A, 2015, 3, 4092-4123.	5.2	258
63	Heat-resistant and rigid-flexible coupling glass-fiber nonwoven supported polymer electrolyte for high-performance lithium ion batteries. Electrochimica Acta, 2015, 157, 191-198.	2.6	35
64	Interface engineering for high-performance perovskite hybrid solar cells. Journal of Materials Chemistry A, 2015, 3, 19205-19217.	5.2	145
65	Single-ion dominantly conducting polyborates towards high performance electrolytes in lithium batteries. Journal of Materials Chemistry A, 2015, 3, 7773-7779.	5.2	63
66	Functional lithium borate salts and their potential application in high performance lithium batteries. Coordination Chemistry Reviews, 2015, 292, 56-73.	9.5	90
67	Additive-Modulated Evolution of HC(NH ₂) ₂ PbI ₃ Black Polymorph for Mesoscopic Perovskite Solar Cells. Chemistry of Materials, 2015, 27, 7149-7155.	3.2	197
68	A composite gel polymer electrolyte with high voltage cyclability for Ni-rich cathode of lithium-ion battery. Electrochemistry Communications, 2015, 61, 32-35.	2.3	37
69	Flexible graphite film with laser drilling pores as novel integrated anode free of metal current collector for sodium ion battery. Electrochemistry Communications, 2015, 61, 84-88.	2.3	42
70	Biomass-derived materials for electrochemical energy storages. Progress in Polymer Science, 2015, 43, 136-164.	11.8	251
71	Reproducible One-Step Fabrication of Compact MAPbI _{3–<i>x</i>} Cl _{<i>x</i>} Thin Films Derived from Mixed-Lead-Halide Precursors. Chemistry of Materials, 2014, 26, 7145-7150.	3.2	81
72	A single-ion gel polymer electrolyte based on polymeric lithium tartaric acid borate and its superior battery performance. Solid State Ionics, 2014, 262, 747-753.	1.3	60

#	Article	IF	CITATIONS
73	Polydopamine-coated cellulose microfibrillated membrane as high performance lithium-ion battery separator. RSC Advances, 2014, 4, 7845.	1.7	134
74	A Heat Resistant and Flame-Retardant Polysulfonamide/Polypropylene Composite Nonwoven for High Performance Lithium Ion Battery Separator. Journal of the Electrochemical Society, 2014, 161, A1032-A1038.	1.3	26
75	NH ₂ CHâ•NH ₂ PbI ₃ : An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells. Chemistry of Materials, 2014, 26, 1485-1491.	3.2	516
76	A superior thermostable and nonflammable composite membrane towards high power battery separator. Nano Energy, 2014, 10, 277-287.	8.2	77
77	Functional Layers for Zn ^{II} Ion Detection: From Molecular Design to Optical Fiber Sensors. Journal of Physical Chemistry B, 2014, 118, 309-314.	1.2	9
78	A single-ion gel polymer electrolyte system for improving cycle performance of LiMn2O4 battery at elevated temperatures. Electrochimica Acta, 2014, 141, 167-172.	2.6	54
79	The morphology transformation from helical nanofiber to helical nanotube in a diarylethene self-assembly system. Chemical Communications, 2014, 50, 8335-8338.	2.2	7
80	Improving solution-processed n-type organic field-effect transistors by transfer-printed metal/semiconductor and semiconductor/semiconductor heterojunctions. Organic Electronics, 2014, 15, 1884-1889.	1.4	16
81	Vapour-based processing of hole-conductor-free CH ₃ NH ₃ PbI ₃ perovskite/C ₆₀ fullerene planar solar cells. RSC Advances, 2014, 4, 28964-28967.	1.7	127
82	Cellulose/Polysulfonamide Composite Membrane as a High Performance Lithium-Ion Battery Separator. ACS Sustainable Chemistry and Engineering, 2014, 2, 194-199.	3.2	166
83	Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Scientific Reports, 2014, 4, 3935.	1.6	203
84	Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries. Scientific Reports, 2014, 4, 6272.	1.6	127
85	A highly safe and inflame retarding aramid lithium ion battery separator by a papermaking process. Solid State Ionics, 2013, 245-246, 49-55.	1.3	55
86	Molybdenum Nitride/N-Doped Carbon Nanospheres for Lithium-O ₂ Battery Cathode Electrocatalyst. ACS Applied Materials & Interfaces, 2013, 5, 3677-3682.	4.0	90
87	Electrodeposition of nanostructured cobalt selenide films towards high performance counter electrodes in dye-sensitized solar cells. RSC Advances, 2013, 3, 16528.	1.7	71
88	An elastic germanium–carbon nanotubes–copper foam monolith as an anode for rechargeable lithium batteries. RSC Advances, 2013, 3, 1336-1340.	1.7	38
89	An insight into the effect of nitrogen doping on the performance of a reduced graphene oxide counter electrode for dye-sensitized solar cells. RSC Advances, 2013, 3, 9005.	1.7	18
90	Mesoporous NiCo2O4 nanoflakes as electrocatalysts for rechargeable Li–O2 batteries. Chemical Communications, 2013, 49, 3540.	2.2	167

#	Article	IF	CITATIONS
91	A high temperature operating nanofibrous polyimide separator in Li-ion battery. Solid State Ionics, 2013, 232, 44-48.	1.3	157
92	Exploring polymeric lithium tartaric acid borate for thermally resistant polymer electrolyte of lithium batteries. Electrochimica Acta, 2013, 92, 132-138.	2.6	81
93	Renewable and Superior Thermal-Resistant Cellulose-Based Composite Nonwoven as Lithium-Ion Battery Separator. ACS Applied Materials & Interfaces, 2013, 5, 128-134.	4.0	317
94	A Heat-Resistant Silica Nanoparticle Enhanced Polysulfonamide Nonwoven Separator for High-Performance Lithium Ion Battery. Journal of the Electrochemical Society, 2013, 160, A769-A774.	1.3	46
95	A Core@sheath Nanofibrous Separator for Lithium Ion Batteries Obtained by Coaxial Electrospinning. Macromolecular Materials and Engineering, 2013, 298, 806-813.	1.7	48
96	A Core-Shell Structured Polysulfonamide-Based Composite Nonwoven Towards High Power Lithium Ion Battery Separator. Journal of the Electrochemical Society, 2013, 160, A1341-A1347.	1.3	67
97	Nitrogen-doping of chemically reduced mesocarbon microbead oxide for the improved performance of lithium ion batteries. Carbon, 2012, 50, 1355-1362.	5.4	58
98	1D Coaxial Platinum/Titanium Nitride Nanotube Arrays with Enhanced Electrocatalytic Activity for the Oxygen Reduction Reaction: Towards Li–Air Batteries. ChemSusChem, 2012, 5, 1712-1715.	3.6	40
99	In situ synthesis of a graphene/titanium nitride hybrid material with highly improved performance for lithium storage. Journal of Materials Chemistry, 2012, 22, 4938.	6.7	79
100	Hierarchical micro/nano-structured titanium nitride spheres as a high-performance counter electrode for a dye-sensitized solar cell. Journal of Materials Chemistry, 2012, 22, 6067.	6.7	64
101	CuInS ₂ Nanocrystals/PEDOT:PSS Composite Counter Electrode for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2012, 4, 6242-6246.	4.0	56
102	Nanostructured Titanium Nitride/PEDOT:PSS Composite Films As Counter Electrodes of Dye-Sensitized Solar Cells. ACS Applied Materials & amp; Interfaces, 2012, 4, 1087-1092.	4.0	105
103	Synthesis of Nitrogen-Doped MnO/Graphene Nanosheets Hybrid Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 658-664.	4.0	331
104	A renewable bamboo carbon/polyaniline composite for a high-performance supercapacitor electrode material. Journal of Solid State Electrochemistry, 2012, 16, 877-882.	1.2	80
105	Synthesis, Electrochemical Properties and Selfâ€Assembly of a Proton onducting Core–Shell Macromolecule. Chemistry - A European Journal, 2012, 18, 2239-2243.	1.7	9
106	Nitrogen-doped graphene nanosheets with excellent lithium storage properties. Journal of Materials Chemistry, 2011, 21, 5430.	6.7	686
107	Core-Extended Terrylene Tetracarboxdiimide: Synthesis and Chiroptical Characterization. Organic Letters, 2011, 13, 5528-5531.	2.4	74
108	One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage. Energy and Environmental Science, 2011, 4, 3502.	15.6	221

ZHIHONG LIU

#	Article	IF	CITATIONS
109	Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2+ redox couples for vanadium redox flow batteries. Energy and Environmental Science, 2011, 4, 4710.	15.6	286
110	Facile Preparation of Mesoporous Titanium Nitride Microspheres for Electrochemical Energy Storage. ACS Applied Materials & Interfaces, 2011, 3, 93-98.	4.0	142
111	Molybdenum nitride based hybrid cathode for rechargeable lithium–O2 batteries. Chemical Communications, 2011, 47, 11291.	2.2	115
112	Optical modulation of supramolecular assembly of amphiphilic photochromic diarylethene: from nanofiber to nanosphere. Chemical Communications, 2011, 47, 6876.	2.2	30
113	A hybrid material of vanadium nitride and nitrogen-doped graphene for lithium storage. Journal of Materials Chemistry, 2011, 21, 11916.	6.7	96
114	Mesoporous Coaxial Titanium Nitride-Vanadium Nitride Fibers of Core–shell Structures for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2011, 3, 3058-3063.	4.0	183
115	TiN/VN composites with core/shell structure for supercapacitors. Materials Research Bulletin, 2011, 46, 835-839.	2.7	75
116	Exfoliated graphite nanosheets/carbon nanotubes hybrid materials for superior performance supercapacitors. Journal of Solid State Electrochemistry, 2011, 15, 1179-1184.	1.2	39
117	A biocompatible titanium nitride nanorods derived nanostructured electrode for biosensing and bioelectrochemical energy conversion. Biosensors and Bioelectronics, 2011, 26, 4088-4094.	5.3	34
118	Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>VO</mml:mtext></mml:mrow><mm and V2+/V3+ redox couples for a vanadium redox flow battery. Carbon, 2011, 49, 693-700.</mm </mml:msubsup></mml:mrow></mml:math 	l:mřów><	nm1:mn>2
119	Rutile TiO2 nanorod arrays directly grown on Ti foil substrates towards lithium-ion micro-batteries. Thin Solid Films, 2011, 519, 5978-5982.	0.8	42
120	A facile method of preparing mixed conducting LiFePO4/graphene composites for lithium-ion batteries. Solid State Ionics, 2010, 181, 1685-1689.	1.3	132
121	High-Performance Solution-Deposited Ambipolar Organic Transistors Based on Terrylene Diimides. Chemistry of Materials, 2010, 22, 2120-2124.	3.2	69
122	Rainbow Perylene Monoimides: Easy Control of Optical Properties. Chemistry - A European Journal, 2009, 15, 878-884.	1.7	79
123	Perylenes as sensitizers in hybrid solar cells: how molecular size influences performance. Journal of Materials Chemistry, 2009, 19, 5405.	6.7	57
124	From Ambi―to Unipolar Behavior in Discotic Dye Fieldâ€Effect Transistors. Advanced Materials, 2008, 20, 2715-2719.	11.1	83
125	Amino-substituted rylene dicarboximides and their quinoidal charge delocalization after deprotonation. Chemical Communications, 2008, , 5028.	2.2	10
126	A Simple and Versatile Route to Stable Quantum Dotâ^'Dye Hybrids in Nonaqueous and Aqueous Solutions. Journal of the American Chemical Society, 2008, 130, 17242-17243.	6.6	62

#	Article	IF	CITATIONS
127	Liquidâ~'Liquid and Solidâ~'Liquid Equilibrium of the Ternary System Ethanol + Cesium Sulfate + Water at (10, 30, and 50) °C. Journal of Chemical & Engineering Data, 2003, 48, 1561-1564.	1.0	73