Zhihong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4097721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials, 2016, 5, 139-164.	9.5	768
2	Nitrogen-doped graphene nanosheets with excellent lithium storage properties. Journal of Materials Chemistry, 2011, 21, 5430.	6.7	686
3	Safetyâ€Reinforced Poly(Propylene Carbonate)â€Based Allâ€Solidâ€State Polymer Electrolyte for Ambientâ€Temperature Solid Polymer Lithium Batteries. Advanced Energy Materials, 2015, 5, 1501082.	10.2	532
4	NH ₂ CHâ•NH ₂ PbI ₃ : An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells. Chemistry of Materials, 2014, 26, 1485-1491.	3.2	516
5	Methylamineâ€Gasâ€Induced Defectâ€Healing Behavior of CH ₃ NH ₃ PbI ₃ Thin Films for Perovskite Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 9705-9709.	7.2	377
6	In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO ₂ Lithium Batteries. Advanced Science, 2017, 4, 1600377.	5.6	377
7	High-voltage and free-standing poly(propylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 512 Td (carbonate) composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. Journal of Materials Chemistry A. 2017, 5, 4940-4948.	/Li _{6 5.2}	.75La 373
8	Synthesis of Nitrogen-Doped MnO/Graphene Nanosheets Hybrid Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 658-664.	4.0	331
9	Renewable and Superior Thermal-Resistant Cellulose-Based Composite Nonwoven as Lithium-Ion Battery Separator. ACS Applied Materials & Interfaces, 2013, 5, 128-134.	4.0	317
10	Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2+ redox couples for vanadium redox flow batteries. Energy and Environmental Science, 2011, 4, 4710.	15.6	286
11	Strategies for improving the cyclability and thermo-stability of LiMn ₂ O ₄ -based batteries at elevated temperatures. Journal of Materials Chemistry A, 2015, 3, 4092-4123.	5.2	258
12	Biomass-derived materials for electrochemical energy storages. Progress in Polymer Science, 2015, 43, 136-164.	11.8	251
13	Progress in nitrile-based polymer electrolytes for high performance lithium batteries. Journal of Materials Chemistry A, 2016, 4, 10070-10083.	5.2	243
14	Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/ <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>VO</mml:mtext></mml:mrow><mml:math 2011,="" 49,="" 693-700.<="" a="" and="" battery.="" carbon,="" couples="" flow="" for="" redox="" td="" v2+="" v3+="" vanadium=""><td>mrow><m< td=""><td>1934 1m1:mn>2</td></m<></td></mml:math></mml:msubsup></mml:mrow></mml:math>	mrow> <m< td=""><td>1934 1m1:mn>2</td></m<>	1934 1m1:mn>2
15	Novel Design Concepts of Efficient Mgâ€lon Electrolytes toward Highâ€Performance Magnesium–Selenium and Magnesium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1602055.	10.2	231
16	One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage. Energy and Environmental Science, 2011, 4, 3502.	15.6	221
17	Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Scientific Reports, 2014, 4, 3935.	1.6	203
18	Additive-Modulated Evolution of HC(NH ₂) ₂ PbI ₃ Black Polymorph for Mesoscopic Perovskite Solar Cells, Chemistry of Materials, 2015, 27, 7149-7155	3.2	197

#	Article	IF	CITATIONS
19	Mesoporous Coaxial Titanium Nitride-Vanadium Nitride Fibers of Core–shell Structures for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2011, 3, 3058-3063.	4.0	183
20	Interfacial Study on Solid Electrolyte Interphase at Li Metal Anode: Implication for Li Dendrite Growth. Journal of the Electrochemical Society, 2016, 163, A592-A598.	1.3	180
21	Mesoporous NiCo2O4 nanoflakes as electrocatalysts for rechargeable Li–O2 batteries. Chemical Communications, 2013, 49, 3540.	2.2	167
22	Cellulose/Polysulfonamide Composite Membrane as a High Performance Lithium-Ion Battery Separator. ACS Sustainable Chemistry and Engineering, 2014, 2, 194-199.	3.2	166
23	A high temperature operating nanofibrous polyimide separator in Li-ion battery. Solid State Ionics, 2013, 232, 44-48.	1.3	157
24	High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self atalyzed Strategy toward Facile Synthesis. Advanced Science, 2017, 4, 1700174.	5.6	155
25	A Superior Polymer Electrolyte with Rigid Cyclic Carbonate Backbone for Rechargeable Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 17897-17905.	4.0	146
26	Interface engineering for high-performance perovskite hybrid solar cells. Journal of Materials Chemistry A, 2015, 3, 19205-19217.	5.2	145
27	Facile Preparation of Mesoporous Titanium Nitride Microspheres for Electrochemical Energy Storage. ACS Applied Materials & Interfaces, 2011, 3, 93-98.	4.0	142
28	Polydopamine-coated cellulose microfibrillated membrane as high performance lithium-ion battery separator. RSC Advances, 2014, 4, 7845.	1.7	134
29	A facile method of preparing mixed conducting LiFePO4/graphene composites for lithium-ion batteries. Solid State Ionics, 2010, 181, 1685-1689.	1.3	132
30	Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries. Electrochimica Acta, 2017, 225, 151-159.	2.6	128
31	Vapour-based processing of hole-conductor-free CH ₃ NH ₃ PbI ₃ perovskite/C ₆₀ fullerene planar solar cells. RSC Advances, 2014, 4, 28964-28967.	1.7	127
32	Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries. Scientific Reports, 2014, 4, 6272.	1.6	127
33	Facile and Reliable in Situ Polymerization of Poly(Ethyl Cyanoacrylate)-Based Polymer Electrolytes toward Flexible Lithium Batteries. ACS Applied Materials & Interfaces, 2017, 9, 8737-8741.	4.0	122
34	A Strategy to Make High Voltage LiCoO ₂ Compatible with Polyethylene Oxide Electrolyte in All-Solid-State Lithium Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A3454-A3461.	1.3	116
35	Molybdenum nitride based hybrid cathode for rechargeable lithium–O2 batteries. Chemical Communications, 2011, 47, 11291.	2.2	115
36	Singleâ€Ion Conducting Electrolyte Based on Electrospun Nanofibers for Highâ€Performance Lithium Batteries. Advanced Energy Materials, 2019, 9, 1803422.	10.2	109

#	Article	IF	CITATIONS
37	Rigid–Flexible Coupling High Ionic Conductivity Polymer Electrolyte for an Enhanced Performance of LiMn ₂ O ₄ /Graphite Battery at Elevated Temperature. ACS Applied Materials & Interfaces, 2015, 7, 4720-4727.	4.0	108
38	Nanostructured Titanium Nitride/PEDOT:PSS Composite Films As Counter Electrodes of Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2012, 4, 1087-1092.	4.0	105
39	A sustainable and rigid-flexible coupling cellulose-supported poly(propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries. Electrochimica Acta, 2016, 188, 23-30.	2.6	102
40	A hybrid material of vanadium nitride and nitrogen-doped graphene for lithium storage. Journal of Materials Chemistry, 2011, 21, 11916.	6.7	96
41	Advanced Catalytic Materials for Ethanol Oxidation in Direct Ethanol Fuel Cells. Catalysts, 2020, 10, 166.	1.6	95
42	Molybdenum Nitride/N-Doped Carbon Nanospheres for Lithium-O ₂ Battery Cathode Electrocatalyst. ACS Applied Materials & Interfaces, 2013, 5, 3677-3682.	4.0	90
43	Functional lithium borate salts and their potential application in high performance lithium batteries. Coordination Chemistry Reviews, 2015, 292, 56-73.	9.5	90
44	An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries. Journal of Materials Chemistry A, 2017, 5, 11124-11130.	5.2	89
45	From Ambi―to Unipolar Behavior in Discotic Dye Fieldâ€Effect Transistors. Advanced Materials, 2008, 20, 2715-2719.	11.1	83
46	Dendriteâ€Free Lithium Deposition via Flexibleâ€Rigid Coupling Composite Network for LiNi _{0.5} Mn _{1.5} O ₄ /Li Metal Batteries. Small, 2018, 14, e1802244.	5.2	83
47	Exploring polymeric lithium tartaric acid borate for thermally resistant polymer electrolyte of lithium batteries. Electrochimica Acta, 2013, 92, 132-138.	2.6	81
48	Reproducible One-Step Fabrication of Compact MAPbI _{3–<i>x</i>} Cl _{<i>x</i>} Thin Films Derived from Mixed-Lead-Halide Precursors. Chemistry of Materials, 2014, 26, 7145-7150.	3.2	81
49	A renewable bamboo carbon/polyaniline composite for a high-performance supercapacitor electrode material. Journal of Solid State Electrochemistry, 2012, 16, 877-882.	1.2	80
50	Rainbow Perylene Monoimides: Easy Control of Optical Properties. Chemistry - A European Journal, 2009, 15, 878-884.	1.7	79
51	In situ synthesis of a graphene/titanium nitride hybrid material with highly improved performance for lithium storage. Journal of Materials Chemistry, 2012, 22, 4938.	6.7	79
52	A superior thermostable and nonflammable composite membrane towards high power battery separator. Nano Energy, 2014, 10, 277-287.	8.2	77
53	A high-voltage poly(methylethyl α-cyanoacrylate) composite polymer electrolyte for 5 V lithium batteries. Journal of Materials Chemistry A, 2016, 4, 5191-5197.	5.2	76
54	TiN/VN composites with core/shell structure for supercapacitors. Materials Research Bulletin, 2011, 46, 835-839.	2.7	75

#	Article	IF	CITATIONS
55	Core-Extended Terrylene Tetracarboxdiimide: Synthesis and Chiroptical Characterization. Organic Letters, 2011, 13, 5528-5531.	2.4	74
56	Liquidâ^'Liquid and Solidâ^'Liquid Equilibrium of the Ternary System Ethanol + Cesium Sulfate + Water at (10, 30, and 50) °C. Journal of Chemical & Engineering Data, 2003, 48, 1561-1564.	1.0	73
57	Electrodeposition of nanostructured cobalt selenide films towards high performance counter electrodes in dye-sensitized solar cells. RSC Advances, 2013, 3, 16528.	1.7	71
58	High-Performance Solution-Deposited Ambipolar Organic Transistors Based on Terrylene Diimides. Chemistry of Materials, 2010, 22, 2120-2124.	3.2	69
59	A Core-Shell Structured Polysulfonamide-Based Composite Nonwoven Towards High Power Lithium Ion Battery Separator. Journal of the Electrochemical Society, 2013, 160, A1341-A1347.	1.3	67
60	Hierarchical micro/nano-structured titanium nitride spheres as a high-performance counter electrode for a dye-sensitized solar cell. Journal of Materials Chemistry, 2012, 22, 6067.	6.7	64
61	Single-ion dominantly conducting polyborates towards high performance electrolytes in lithium batteries. Journal of Materials Chemistry A, 2015, 3, 7773-7779.	5.2	63
62	Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic) Tj ETQo High-Voltage Batteries. ACS Applied Materials & Interfaces, 2017, 9, 41462-41472.	0 0 0 rgBT 4.0	/Overlock 10 63
63	Electric-Field-Directed Parallel Alignment Architecting 3D Lithium-Ion Pathways within Solid Composite Electrolyte. ACS Applied Materials & Interfaces, 2018, 10, 15691-15696.	4.0	63
64	A Simple and Versatile Route to Stable Quantum Dotâ^'Dye Hybrids in Nonaqueous and Aqueous Solutions. Journal of the American Chemical Society, 2008, 130, 17242-17243.	6.6	62
65	Recent advances in nanostructured metal phosphides as promising anode materials for rechargeable batteries. Journal of Materials Chemistry A, 2020, 8, 19113-19132.	5.2	61
66	A single-ion gel polymer electrolyte based on polymeric lithium tartaric acid borate and its superior battery performance. Solid State Ionics, 2014, 262, 747-753.	1.3	60
67	Nitrogen-doping of chemically reduced mesocarbon microbead oxide for the improved performance of lithium ion batteries. Carbon, 2012, 50, 1355-1362.	5.4	58
68	In Situ Formation of Polysulfonamide Supported Poly(ethylene glycol) Divinyl Ether Based Polymer Electrolyte toward Monolithic Sodium Ion Batteries. Small, 2017, 13, 1601530.	5.2	58
69	Perylenes as sensitizers in hybrid solar cells: how molecular size influences performance. Journal of Materials Chemistry, 2009, 19, 5405.	6.7	57
70	CuInS ₂ Nanocrystals/PEDOT:PSS Composite Counter Electrode for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2012, 4, 6242-6246.	4.0	56
71	Thermal Stability and Mechanical Response of Bi ₂ Te ₃ -Based Materials for Thermoelectric Applications. ACS Applied Energy Materials, 2020, 3, 2078-2089.	2.5	56
72	A highly safe and inflame retarding aramid lithium ion battery separator by a papermaking process. Solid State Ionics, 2013, 245-246, 49-55.	1.3	55

#	Article	IF	CITATIONS
73	A single-ion gel polymer electrolyte system for improving cycle performance of LiMn2O4 battery at elevated temperatures. Electrochimica Acta, 2014, 141, 167-172.	2.6	54
74	A Core@sheath Nanofibrous Separator for Lithium Ion Batteries Obtained by Coaxial Electrospinning. Macromolecular Materials and Engineering, 2013, 298, 806-813.	1.7	48
75	A Heat-Resistant Silica Nanoparticle Enhanced Polysulfonamide Nonwoven Separator for High-Performance Lithium Ion Battery. Journal of the Electrochemical Society, 2013, 160, A769-A774.	1.3	46
76	Rutile TiO2 nanorod arrays directly grown on Ti foil substrates towards lithium-ion micro-batteries. Thin Solid Films, 2011, 519, 5978-5982.	0.8	42
77	Flexible graphite film with laser drilling pores as novel integrated anode free of metal current collector for sodium ion battery. Electrochemistry Communications, 2015, 61, 84-88.	2.3	42
78	1D Coaxial Platinum/Titanium Nitride Nanotube Arrays with Enhanced Electrocatalytic Activity for the Oxygen Reduction Reaction: Towards Li–Air Batteries. ChemSusChem, 2012, 5, 1712-1715.	3.6	40
79	Electrospun melamine resin-based multifunctional nonwoven membrane for lithium ion batteries at the elevated temperatures. Journal of Power Sources, 2016, 327, 196-203.	4.0	40
80	Exfoliated graphite nanosheets/carbon nanotubes hybrid materials for superior performance supercapacitors. Journal of Solid State Electrochemistry, 2011, 15, 1179-1184.	1.2	39
81	An elastic germanium–carbon nanotubes–copper foam monolith as an anode for rechargeable lithium batteries. RSC Advances, 2013, 3, 1336-1340.	1.7	38
82	A composite gel polymer electrolyte with high voltage cyclability for Ni-rich cathode of lithium-ion battery. Electrochemistry Communications, 2015, 61, 32-35.	2.3	37
83	Highly porous single-ion conductive composite polymer electrolyte for high performance Li-ion batteries. Journal of Power Sources, 2018, 397, 79-86.	4.0	37
84	Heat-resistant and rigid-flexible coupling glass-fiber nonwoven supported polymer electrolyte for high-performance lithium ion batteries. Electrochimica Acta, 2015, 157, 191-198.	2.6	35
85	A novel polyphosphonate flame-retardant additive towards safety-reinforced all-solid-state polymer electrolyte. Materials Chemistry and Physics, 2020, 239, 122014.	2.0	35
86	A biocompatible titanium nitride nanorods derived nanostructured electrode for biosensing and bioelectrochemical energy conversion. Biosensors and Bioelectronics, 2011, 26, 4088-4094.	5.3	34
87	Highly porous single ion conducting polymer electrolyte for advanced lithium-ion batteries via facile water-induced phase separation process. Journal of Membrane Science, 2018, 568, 22-29.	4.1	34
88	Graphdiyne-Modified Polyimide Separator: A Polysulfide-Immobilizing Net Hinders the Shuttling of Polysulfides in Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2019, 11, 35738-35745.	4.0	34
89	Novel Sodium–Poly(tartaric acid)Borate-Based Single-Ion Conducting Polymer Electrolyte for Sodium–Metal Batteries. ACS Applied Energy Materials, 2020, 3, 10053-10060.	2.5	34
90	Effectively suppressing lithium dendrite growth <i>via</i> an es-LiSPCE single-ion conducting nano fiber membrane. Journal of Materials Chemistry A, 2020, 8, 2518-2528.	5.2	33

#	Article	IF	CITATIONS
91	A Polyborate Coated Cellulose Composite Separator for High Performance Lithium Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A834-A838.	1.3	32
92	Rigidity Bridging Flexibility to Harmonize Three Excitedâ€State Deactivation Pathways for NIRâ€IIâ€Fluorescentâ€Imagingâ€Guided Phototherapy. Advanced Healthcare Materials, 2021, 10, e2101003.	3.9	31
93	Optical modulation of supramolecular assembly of amphiphilic photochromic diarylethene: from nanofiber to nanosphere. Chemical Communications, 2011, 47, 6876.	2.2	30
94	Sustainable and Superior Heat-Resistant Alginate Nonwoven Separator of LiNi _{0.5} Mn _{1.5} 0 ₄ /Li Batteries Operated at 55 °C. ACS Applied Materials & Interfaces, 2017, 9, 3694-3701.	4.0	30
95	Unraveling the Critical Role of Melt-Spinning Atmosphere in Enhancing the Thermoelectric Performance of p-Type Bi _{0.52} Sb _{1.48} Te ₃ Alloys. ACS Applied Materials & Interfaces, 2020, 12, 36186-36195.	4.0	28
96	A Heat Resistant and Flame-Retardant Polysulfonamide/Polypropylene Composite Nonwoven for High Performance Lithium Ion Battery Separator. Journal of the Electrochemical Society, 2014, 161, A1032-A1038.	1.3	26
97	A facile non-solvent induced phase separation process for preparation of highly porous polybenzimidazole separator for lithium metal battery application. Scientific Reports, 2019, 9, 19320.	1.6	24
98	Recent advances of non-lithium metal anode materials for solid-state lithium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 16761-16778.	5.2	23
99	Electric-field-induced out-of-plane alignment of clay in poly(dimethylsiloxane) with enhanced anisotropic thermal conductivity and mechanical properties. Composites Science and Technology, 2018, 165, 39-47.	3.8	21
100	In-situ generation of high performance thiol-conjugated solid polymer electrolytes via reliable thiol-acrylate click chemistry. Journal of Power Sources, 2020, 456, 228024.	4.0	20
101	An insight into the effect of nitrogen doping on the performance of a reduced graphene oxide counter electrode for dye-sensitized solar cells. RSC Advances, 2013, 3, 9005.	1.7	18
102	Improving solution-processed n-type organic field-effect transistors by transfer-printed metal/semiconductor and semiconductor/semiconductor heterojunctions. Organic Electronics, 2014, 15, 1884-1889.	1.4	16
103	Facile and Powerful In Situ Polymerization Strategy for Sulfur-Based All-Solid Polymer Electrolytes in Lithium Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 34274-34281.	4.0	14
104	Low temperature performance enhancement of high-safety Lithium–Sulfur battery enabled by synergetic adsorption and catalysis. Electrochimica Acta, 2020, 353, 136470.	2.6	14
105	Nitrogenâ€Doped Porous Carbon as Highâ€Performance Cathode Material for Lithiumâ€Sulfur Battery. ChemistrySelect, 2017, 2, 11030-11034.	0.7	13
106	PACAP stimulates insulin secretion by PAC1 receptor and ion channels in $\hat{1}^2$ -cells. Cellular Signalling, 2019, 61, 48-56.	1.7	13
107	Visible light-mediated atom transfer radical addition to styrene: base controlled selective (phenylsulfonyl)difluoromethylation. Organic Chemistry Frontiers, 2020, 7, 617-621.	2.3	13
108	Ionic liquid-based electrolyte with dual-functional LiDFOB additive toward high-performance LiMn2O4 batteries. Ionics, 2017, 23, 1399-1406.	1.2	12

#	Article	IF	CITATIONS
109	A novel intrinsic flame-retardant and flexible polyurethane solid electrolyte for lithium batteries. Materials Chemistry and Physics, 2022, 279, 125763.	2.0	11
110	Amino-substituted rylene dicarboximides and their quinoidal charge delocalization after deprotonation. Chemical Communications, 2008, , 5028.	2.2	10
111	Influence of PEG 6000 on gallium oxide (Ga2O3) polymorphs and photocatalytic properties. Science China Chemistry, 2015, 58, 532-538.	4.2	10
112	Contactless electric–field driven Z-alignment of ceramic nanoparticles in polymer electrolyte to enhance ionic conductivity. Materials and Design, 2020, 192, 108753.	3.3	10
113	Layered Tin Phosphide Composites as Promising Anodes for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 11306-11313.	2.5	10
114	A poly(1,3-dioxolane) based deep-eutectic polymer electrolyte for high performance ambient polymer lithium battery. Materials Today Physics, 2022, 22, 100620.	2.9	10
115	Synthesis, Electrochemical Properties and Selfâ€Assembly of a Proton onducting Core–Shell Macromolecule. Chemistry - A European Journal, 2012, 18, 2239-2243.	1.7	9
116	Functional Layers for Zn ^{II} Ion Detection: From Molecular Design to Optical Fiber Sensors. Journal of Physical Chemistry B, 2014, 118, 309-314.	1.2	9
117	Synergy of Singleâ€ion Conductive and Thermoâ€responsive Copolymer Hydrogels Achieving Antiâ€Arrhenius Ionic Conductivity. Chemistry - an Asian Journal, 2019, 14, 1404-1408.	1.7	9
118	A delicately designed functional binder enabling in situ construction of <scp>3D</scp> crossâ€linking robust network for highâ€performance Si/graphite composite anode. Journal of Polymer Science, 2022, 60, 1835-1844.	2.0	8
119	The morphology transformation from helical nanofiber to helical nanotube in a diarylethene self-assembly system. Chemical Communications, 2014, 50, 8335-8338.	2.2	7
120	Flame-retardant polyurethane elastomer based on aluminum salt of monomethylphosphinate. Journal of Thermal Analysis and Calorimetry, 2021, 143, 2953-2961.	2.0	7
121	High performance polyimide-based separator for 4.5V high voltage LiCoO2 battery with superior safety. Materials Chemistry and Physics, 2022, 282, 125975.	2.0	7
122	Li0.35La0.55TiO3 nanofibers filled poly (ethylene carbonate) composite electrolyte with enhanced ion conduction and electrochemical stability. Thin Solid Films, 2021, 734, 138835.	0.8	6
123	AC Electric-Field Assistant Architecting Ordered Network of Ni@PS Microspheres in Epoxy Resin to Enhance Conductivity. Polymers, 2021, 13, 3826.	2.0	4
124	Lithium Batteries: Single-Ion Conducting Electrolyte Based on Electrospun Nanofibers for High-Performance Lithium Batteries (Adv. Energy Mater. 10/2019). Advanced Energy Materials, 2019, 9, 1970029.	10.2	2
125	Insight into Superior Electrochemical Performance of 4.5 V High-Voltage LiCoO ₂ Using a Robust Polyacrylonitrile Binder. ACS Applied Energy Materials, 2022, 5, 3072-3080.	2.5	2
126	Electric fieldâ€driven preparation of elastomer/plastic nanoparticles gradient films with enhanced damping property. Journal of Applied Polymer Science, 2020, 137, 48401.	1.3	1

#	Article	IF	CITATIONS
127	A novel conjugated heterotriangulene polymer for high performance organic lithium-ion battery. Dyes and Pigments, 2021, 191, 109352.	2.0	1