Mike Althaus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4097696/publications.pdf

Version: 2024-02-01

38 papers

1,134 citations

430442 18 h-index 395343 33 g-index

42 all docs 42 docs citations

times ranked

42

1607 citing authors

#	Article	IF	CITATIONS
1	Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8287-8292.	3.3	134
2	Mechanoâ€sensitivity of epithelial sodium channels (ENaCs): laminar shear stress increases ion channel open probability. FASEB Journal, 2007, 21, 2389-2399.	0.2	121
3	Evolutionary conservation of the antimicrobial function of mucus: a first defence against infection. Npj Biofilms and Microbiomes, 2018, 4, 14.	2.9	85
4	Carbon Monoxide Rapidly Impairs Alveolar Fluid Clearance by Inhibiting Epithelial Sodium Channels. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 639-650.	1.4	58
5	Canonical and Novel Non-Canonical Cholinergic Agonists Inhibit ATP-Induced Release of Monocytic Interleukin- $1\hat{i}^2$ via Different Combinations of Nicotinic Acetylcholine Receptor Subunits $\hat{i}\pm7$, $\hat{i}\pm9$ and $\hat{i}\pm10$. Frontiers in Cellular Neuroscience, 2017, 11, 189.	1.8	58
6	ENaC Inhibitors and Airway Re-hydration in Cystic Fibrosis: State of the Art. Current Molecular Pharmacology, 2013, 6, 3-12.	0.7	54
7	Controlling epithelial sodium channels with light using photoswitchable amilorides. Nature Chemistry, 2014, 6, 712-719.	6.6	54
8	Trading amino acids at the aphid– <i>Buchnera</i> symbiotic interface. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16003-16011.	3.3	53
9	Amiloride-Sensitive Sodium Channels and Pulmonary Edema. Pulmonary Medicine, 2011, 2011, 1-8.	0.5	46
10	Why Do We have to Move Fluid to be Able to Breathe?. Frontiers in Physiology, 2012, 3, 146.	1.3	43
11	Epithelial Na+ channels derived from human lung are activated by shear force. Respiratory Physiology and Neurobiology, 2010, 170, 113-119.	0.7	42
12	Tracheal brush cells release acetylcholine in response to bitter tastants for paracrine and autocrine signaling. FASEB Journal, 2020, 34, 316-332.	0.2	41
13	The neuronal-specific SGK1.1 kinase regulates $\hat{\Gamma}$ -epithelial Na ⁺ channel independently of PY motifs and couples it to phospholipase C signaling. American Journal of Physiology - Cell Physiology, 2010, 299, C779-C790.	2.1	38
14	Nitric Oxide Inhibits Highly Selective Sodium Channels and the Na+/K+-ATPase in H441 Cells. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 53-65.	1.4	36
15	Epithelial Electrolyte Transport Physiology and the Gasotransmitter Hydrogen Sulfide. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-13.	1.9	25
16	Evolution of epithelial sodium channels: current concepts and hypotheses. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 319, R387-R400.	0.9	24
17	Gasotransmitters: Novel Regulators of Epithelial Na+ Transport?. Frontiers in Physiology, 2012, 3, 83.	1.3	21
18	Differential N termini in epithelial Na ⁺ channel δ-subunit isoforms modulate channel trafficking to the membrane. American Journal of Physiology - Cell Physiology, 2012, 302, C868-C879.	2.1	20

#	Article	IF	CITATIONS
19	Incorporation of the δ-subunit into the epithelial sodium channel (ENaC) generates protease-resistant ENaCs in Xenopus laevis. Journal of Biological Chemistry, 2018, 293, 6647-6658.	1.6	20
20	Hydrogen sulfide decreases \hat{l}^2 -adrenergic agonist-stimulated lung liquid clearance by inhibiting ENaC-mediated transepithelial sodium absorption. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R636-R649.	0.9	19
21	Actions of Hydrogen Sulfide on Sodium Transport Processes across Native Distal Lung Epithelia (Xenopus laevis). PLoS ONE, 2014, 9, e100971.	1.1	16
22	Thiol-reactive compounds from garlic inhibit the epithelial sodium channel (ENaC). Bioorganic and Medicinal Chemistry, 2012, 20, 3979-3984.	1.4	15
23	Hydrogen sulfide stimulates CFTR in Xenopus oocytes by activation of the cAMP/PKA signalling axis. Scientific Reports, 2017, 7, 3517.	1.6	14
24	Hydrogen sulfide contributes to hypoxic inhibition of airway transepithelial sodium absorption. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R607-R617.	0.9	13
25	An extracellular acidic cleft confers profound H+-sensitivity to epithelial sodium channels containing the Î-subunit in Xenopus laevis. Journal of Biological Chemistry, 2019, 294, 12507-12520.	1.6	12
26	Novel small molecule epithelial sodium channel inhibitors as potential therapeutics in cystic fibrosis $\hat{a} \in \hat{a}$ a patent evaluation. Expert Opinion on Therapeutic Patents, 2013, 23, 1383-1389.	2.4	11
27	Gasotransmitters: novel regulators of ion channels and transporters. Frontiers in Physiology, 2013, 4, 27.	1.3	10
28	Two Functional Epithelial Sodium Channel Isoforms Are Present in Rodents despite Pronounced Evolutionary Pseudogenization and Exon Fusion. Molecular Biology and Evolution, 2021, 38, 5704-5725.	3.5	9
29	Caveolin-1: Functional Insights into Its Role in Muscarine- and Serotonin-Induced Smooth Muscle Constriction in Murine Airways. Frontiers in Physiology, 2017, 8, 295.	1.3	7
30	Clinical and molecular characterization of the R751L-CFTR mutation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L288-L300.	1.3	7
31	Proteolytic ENaC activation in health and disease—a complicated puzzle. Pflugers Archiv European Journal of Physiology, 2021, , 1.	1.3	7
32	ENaC in Cholinergic Brush Cells. Frontiers in Cell and Developmental Biology, 2018, 6, 89.	1.8	6
33	The M1 and pre-M1 segments contribute differently to ion selectivity in ASICs and ENaCs. Journal of General Physiology, 2021, 153, .	0.9	5
34	Evans Blue is not a suitable inhibitor of the epithelial sodium channel \hat{l} -subunit. Biochemical and Biophysical Research Communications, 2015, 466, 468-474.	1.0	3
35	Der Epitheliale Natrium Kanal. 15 Jahre Kanalarbeiten. Biologie in Unserer Zeit, 2009, 39, 320-326.	0.3	1
36	The gasotransmitter hydrogen sulphide decreases Na + transport across lung epithelial cells. FASEB Journal, 2012, 26, 696.6.	0.2	1

#	Article	IF	CITATIONS
37	Differential plasma membrane abundance of epithelial sodium channel \hat{l} subunit splice isoforms. FASEB Journal, 2011, 25, 1041.45.	0.2	0
38	Evaluation of the H 2 S gasotransmitter system as a regulator of transepithelial sodium absorption in native lung epithelia (Xenopus laevis). FASEB Journal, 2013, 27, 1148.9.	0.2	0