Weidong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4097492/publications.pdf

Version: 2024-02-01

35	924	16	29
papers	citations	h-index	g-index
35	35	35	985
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Unprotected peptide macrocyclization and stapling via a fluorine-thiol displacement reaction. Nature Communications, 2022, 13, 350.	12.8	10
2	Speed Microscopy: High-Speed Single Molecule Tracking and Mapping of Nucleocytoplasmic Transport. Methods in Molecular Biology, 2022, 2502, 353-371.	0.9	3
3	Spelling out the roles of individual nucleoporins in nuclear export of mRNA. Nucleus, 2022, 13, 172-195.	2.2	7
4	High-speed super-resolution imaging of rotationally symmetric structures using SPEED microscopy and 2D-to-3D transformation. Nature Protocols, 2021, 16, 532-560.	12.0	17
5	Distinct roles of nuclear basket proteins in directing the passage of mRNA through the nuclear pore. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	20
6	STING nuclear partners contribute to innate immune signaling responses. IScience, 2021, 24, 103055.	4.1	22
7	Nuclear Import of Adeno-Associated Viruses Imaged by High-Speed Single-Molecule Microscopy. Viruses, 2021, 13, 167.	3.3	9
8	Nucleoplasmic signals promote directed transmembrane protein import simultaneously via multiple channels of nuclear pores. Nature Communications, 2020, 11, 2184.	12.8	22
9	Nuclear export of mRNA molecules studied by SPEED microscopy. Methods, 2019, 153, 46-62.	3.8	15
10	Casting a Wider Net: Differentiating between Inner Nuclear Envelope and Outer Nuclear Envelope Transmembrane Proteins. International Journal of Molecular Sciences, 2019, 20, 5248.	4.1	19
11	3D Tracking-Free Approach for Obtaining 3D Super-Resolution Information in Rotationally Symmetric Biostructures. Journal of Physical Chemistry B, 2019, 123, 5107-5120.	2.6	13
12	Application of High-speed Super-resolution SPEED Microscopy in Live Primary Cilium. Journal of Visualized Experiments, 2018, , .	0.3	3
13	Determination of Membrane Protein Distribution on the Nuclear Envelope by Singleâ€Point Singleâ€Molecule FRAP. Current Protocols in Cell Biology, 2018, 76, 21.11.1-21.11.13.	2.3	1
14	Reply to â€~Deconstructing transport-distribution reconstruction in the nuclear-pore complex'. Nature Structural and Molecular Biology, 2018, 25, 1062-1064.	8.2	7
15	Structure and Function of the Nuclear Pore Complex Revealed by High-Resolution Fluorescence Microscopy. Nucleic Acids and Molecular Biology, 2018, , 249-274.	0.2	0
16	Nuclear Transport and Accumulation of Smad Proteins Studied by Single-Molecule Microscopy. Biophysical Journal, 2018, 114, 2243-2251.	0.5	9
17	Super-resolution mapping of scaffold nucleoporins in the nuclear pore complex. Journal of Cell Science, 2017, 130, 1299-1306.	2.0	18
18	Axonemal Lumen Dominates Cytosolic Protein Diffusion inside the Primary Cilium. Scientific Reports, 2017, 7, 15793.	3.3	33

#	Article	IF	CITATIONS
19	Probing Protein Distribution Along the Nuclear Envelope In Vivo by Using Single-Point FRAP. Methods in Molecular Biology, 2016, 1411, 113-122.	0.9	O
20	SPEED Microscopy and Its Application in Nucleocytoplasmic Transport. Methods in Molecular Biology, 2016, 1411, 503-518.	0.9	7
21	The selective permeability barrier in the nuclear pore complex. Nucleus, 2016, 7, 430-446.	2.2	50
22	Single-point single-molecule FRAP distinguishes inner and outer nuclear membrane protein distribution. Nature Communications, 2016, 7, 12562.	12.8	33
23	O-GlcNAc-ylation in the Nuclear Pore Complex. Cellular and Molecular Bioengineering, 2016, 9, 227-233.	2.1	23
24	Permeability barriers for generating a unique ciliary protein and lipid composition. Current Opinion in Cell Biology, 2016, 41, 109-116.	5.4	29
25	Super-resolution 3D tomography of interactions and competition in the nuclear pore complex. Nature Structural and Molecular Biology, 2016, 23, 239-247.	8.2	58
26	Super-resolution imaging of nuclear import of adeno-associated virus in live cells. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15047.	4.1	50
27	Quantifying Nucleoporin Stoichiometry Inside Single Nuclear Pore Complexes In vivo. Scientific Reports, 2015, 5, 9372.	3.3	26
28	Three-Dimensional Mapping of mRNA Export through the Nuclear Pore Complex. Genes, 2014, 5, 1032-1049.	2.4	11
29	High-Resolution Imaging Reveals New Features of Nuclear Export of mRNA through the Nuclear Pore Complexes. International Journal of Molecular Sciences, 2014, 15, 14492-14504.	4.1	11
30	TDMA-Based Control Channel Access for IEEE 802.11p in VANETs. International Journal of Distributed Sensor Networks, 2014, 10, 579791.	2.2	18
31	Role of Molecular Charge in Nucleocytoplasmic Transport. PLoS ONE, 2014, 9, e88792.	2.5	23
32	High-resolution three-dimensional mapping of mRNA export through the nuclear pore. Nature Communications, 2013, 4, 2414.	12.8	99
33	Distinct, but not completely separate spatial transport routes in the nuclear pore complex. Nucleus, 2013, 4, 166-175.	2.2	31
34	Self-regulated viscous channel in the nuclear pore complex. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7326-7331.	7.1	115
35	Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7305-7310.	7.1	112