Harkjin Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/409732/publications.pdf

Version: 2024-02-01

16 papers	1,125 citations	14 h-index	940134 16 g-index
16	16	16	1759
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Charge-Transfer through Ultrathin Film TiO $<$ sub $>$ 2 $<$ /sub $>$ 0n $<$ i $>>$ n $<$ li $>>$ Si (111) Photoelectrodes: Experimental and Theoretical Investigation of Electric Field-Enhanced Transport with a Nonaqueous Redox Couple. Journal of Physical Chemistry C, 2016, 120, 25697-25708.	1.5	19
2	H ₂ Photogeneration Using a Phosphonate-Anchored Ni-PNP Catalyst on a Band-Edge-Modified $\langle i \rangle p \langle i \rangle$ -Si(111) AZO Construct. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1061-1066.	4.0	36
3	Photo-assisted electrodeposition of MoSxfrom ionic liquids on organic-functionalized silicon photoelectrodes for H2generation. Journal of Materials Chemistry A, 2016, 4, 7027-7035.	5.2	16
4	Hybrid Organic/Inorganic Band-Edge Modulation of $\langle i \rangle p \langle i \rangle$ -Si(111) Photoelectrodes: Effects of R, Metal Oxide, and Pt on H $\langle sub \rangle 2 \langle sub \rangle$ Generation. Journal of the American Chemical Society, 2015, 137, 3173-3176.	6.6	47
5	Platinum-Enhanced Electron Transfer and Surface Passivation through Ultrathin Film Aluminum Oxide (Al ₂ O ₃) on Si(111)–CH ₃ Photoelectrodes. ACS Applied Materials & Interfaces, 2015, 7, 8572-8584.	4.0	30
6	Hierarchical mesoporous anatase TiO ₂ nanostructures with efficient photocatalytic and photovoltaic performances. Journal of Materials Chemistry A, 2015, 3, 9714-9721.	5.2	43
7	Novel Coupled Structures of FeWO ₄ /TiO ₂ and FeWO ₄ /TiO ₂ /CdS Designed for Highly Efficient Visible-Light Photocatalysis. ACS Applied Materials & Designed for Highly Efficient Visible-Light Photocatalysis.	4.0	63
8	Annealing-free preparation of anatase TiO2 nanopopcorns on Ti foil via a hydrothermal process and their photocatalytic and photovoltaic applications. Journal of Materials Chemistry A, 2013, 1, 5982.	5.2	25
9	Double-heterojunction structure of SbxSn1-xO2/TiO2/CdSe for efficient decomposition of gaseous 2-propanol under visible-light irradiation. RSC Advances, 2012, 2, 622-630.	1.7	35
10	Effect of Layer-by-Layer Assembled SnO ₂ Interfacial Layers in Photovoltaic Properties of Dye-Sensitized Solar Cells. Langmuir, 2012, 28, 10620-10626.	1.6	30
11	Interface control with layer-by-layer assembled ionic polymers for efficient low-temperature dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 11179.	6.7	8
12	Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 532-538.	6.7	201
13	Improvement of Photovoltaic Efficiency of Dye-Sensitized Solar Cell by Introducing Highly Transparent Nanoporous TiO ₂ Buffer Layer. Journal of Nanoscience and Nanotechnology, 2010, 10, 340-344.	0.9	8
14	Low-temperature formation of efficient dye-sensitized electrodes employing nanoporous TiO2 spheres. Electrochemistry Communications, 2010, 12, 1283-1286.	2.3	24
15	Formation of Highly Efficient Dyeâ €S ensitized Solar Cells by Hierarchical Pore Generation with Nanoporous TiO ₂ Spheres. Advanced Materials, 2009, 21, 3668-3673.	11.1	452
16	Formation of Efficient Dye-Sensitized Solar Cells by Introducing an Interfacial Layer of Long-Range Ordered Mesoporous TiO ₂ Thin Film. Langmuir, 2008, 24, 13225-13230.	1.6	88