Helena Edlund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4097203/publications.pdf Version: 2024-02-01

		430874	713466
21	5,748	18	21
papers	citations	h-index	g-index
21	21	21	5386
all docs	docs citations	times ranked	citing authors

HELENA EDLUND

#	Article	IF	CITATIONS
1	Insulin-promoter-factor 1 is required for pancreas development in mice. Nature, 1994, 371, 606-609.	27.8	1,712
2	Notch signalling controls pancreatic cell differentiation. Nature, 1999, 400, 877-881.	27.8	1,075
3	Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature, 1997, 385, 257-260.	27.8	647
4	Pancreatic organogenesis — developmental mechanisms and implications for therapy. Nature Reviews Genetics, 2002, 3, 524-532.	16.3	453
5	The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metabolism, 2005, 1, 245-258.	16.2	378
6	Pdx1 Maintains β Cell Identity and Function by Repressing an α Cell Program. Cell Metabolism, 2014, 19, 259-271.	16.2	325
7	Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nature Genetics, 1999, 23, 67-70.	21.4	324
8	Attenuation of FGF signalling in mouse β-cells leads to diabetes. Nature, 2000, 408, 864-868.	27.8	208
9	Attenuated Wnt Signaling Perturbs Pancreatic Growth but Not Pancreatic Function. Diabetes, 2005, 54, 2844-2851.	0.6	137
10	The Type 2 Diabetes–Associated Gene <i>Ide</i> Is Required for Insulin Secretion and Suppression of α-Synuclein Levels in β-Cells. Diabetes, 2013, 62, 2004-2014.	0.6	90
11	Insulin-degrading enzyme prevents α-synuclein fibril formation in a nonproteolytical manner. Scientific Reports, 2015, 5, 12531.	3.3	88
12	PAN-AMPK activator O304 improves glucose homeostasis and microvascular perfusion in mice and type 2 diabetes patients. JCI Insight, 2018, 3, .	5.0	72
13	Hyperinsulinemia Enhances Hepatic Expression of the Fatty Acid Transporter Cd36 and Provokes Hepatosteatosis and Hepatic Insulin Resistance. Journal of Biological Chemistry, 2015, 290, 19034-19043.	3.4	66
14	The 17,18-epoxyeicosatetraenoic acid–G protein–coupled receptor 40 axis ameliorates contact hypersensitivity by inhibiting neutrophil mobility in mice and cynomolgus macaques. Journal of Allergy and Clinical Immunology, 2018, 142, 470-484.e12.	2.9	55
15	<i>MFng</i> Is Dispensable for Mouse Pancreas Development and Function. Molecular and Cellular Biology, 2009, 29, 2129-2138.	2.3	25
16	Asna1/TRC40 controls beta cell function and ER homeostasis by ensuring retrograde transport. Diabetes, 2015, 65, db150699.	0.6	25
17	α-Synuclein promotes IAPP fibril formation in vitro and β-cell amyloid formation in vivo in mice. Scientific Reports, 2020, 10, 20438.	3.3	25
18	Gastric Amylin Expression: Cellular Identity and Lack of Requirement for the Homeobox Protein PDX-1. A Study in Normal and PDX-1-Deficient Animals with a Cautionary Note on Antiserum Evaluation. Journal of Histochemistry and Cytochemistry, 1999, 47, 973-980.	2.5	22

Helena Edlund

#	Article	IF	CITATIONS
19	AMPK activator O304 improves metabolic and cardiac function, and exercise capacity in aged mice. Communications Biology, 2021, 4, 1306.	4.4	9
20	The ATPase activity of Asna1/TRC40 is required for pancreatic progenitor cell survival. Development (Cambridge), 2018, 145, .	2.5	6
21	Pan-AMPK activator O304 prevents gene expression changes and remobilisation of histone marks in islets of diet-induced obese mice. Scientific Reports, 2021, 11, 24410.	3.3	6