
## Michael V Sefton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4097175/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials, 2004, 25, 5681-5703.                                                                      | 11.4 | 1,162     |
| 2  | Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nature Materials, 2016, 15, 669-678.                                                         | 27.5 | 471       |
| 3  | Vascularized organoid engineered by modular assembly enables blood perfusion. Proceedings of the<br>National Academy of Sciences of the United States of America, 2006, 103, 11461-11466.                      | 7.1  | 342       |
| 4  | Endotoxin: The uninvited guest. Biomaterials, 2005, 26, 6811-6817.                                                                                                                                             | 11.4 | 330       |
| 5  | The influence of biomaterials on endothelial cell thrombogenicity. Biomaterials, 2007, 28, 2547-2571.                                                                                                          | 11.4 | 211       |
| 6  | Microencapsulation of mammalian cells in a HEMA-MMA copolymer: Effects on capsule morphology and permeability. Journal of Biomedical Materials Research Part B, 1990, 24, 1241-1262.                           | 3.1  | 106       |
| 7  | Review Does polyethylene oxide possess a low thrombogenicity?. Journal of Biomaterials Science,<br>Polymer Edition, 1993, 4, 381-400.                                                                          | 3.5  | 100       |
| 8  | Modular tissue engineering for the vascularization of subcutaneously transplanted pancreatic islets.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9337-9342. | 7.1  | 97        |
| 9  | Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system.<br>Journal of Controlled Release, 2014, 190, 219-227.                                                          | 9.9  | 94        |
| 10 | Properties of a heparin-poly(vinyl alcohol) hydrogel coating. Journal of Biomedical Materials<br>Research Part B, 1983, 17, 359-373.                                                                           | 3.1  | 90        |
| 11 | Semi-synthetic collagen/poloxamine matrices for tissue engineering. Biomaterials, 2005, 26, 7425-7435.                                                                                                         | 11.4 | 89        |
| 12 | The blood compatibility challenge. Part 3: Material associated activation of blood cascades and cells.<br>Acta Biomaterialia, 2019, 94, 25-32.                                                                 | 8.3  | 81        |
| 13 | Endothelialized biomaterials for tissue engineering applications in vivo. Trends in Biotechnology, 2011, 29, 379-387.                                                                                          | 9.3  | 75        |
| 14 | Microencapsulated human hepatoma (HepG2) cells:In vitro growth and protein release. Journal of<br>Biomedical Materials Research Part B, 1993, 27, 1213-1224.                                                   | 3.1  | 74        |
| 15 | Acquisition of a Unique Mesenchymal Precursor-like Blastema State Underlies Successful Adult<br>Mammalian Digit Tip Regeneration. Developmental Cell, 2020, 52, 509-524.e9.                                    | 7.0  | 74        |
| 16 | Effect of heparin-pva hydrogel on platelets in a chronic canine arterio-venous shunt. Journal of<br>Biomedical Materials Research Part B, 1989, 23, 417-441.                                                   | 3.1  | 67        |
| 17 | Immobilization of poly(ethylene glycol) onto a poly(vinyl alcohol) hydrogel: 2. Evaluation of thrombogenicity. Journal of Biomedical Materials Research Part B, 1993, 27, 1383-1391.                           | 3.1  | 64        |
| 18 | Microencapsulation of mammalian cells in a water-insoluble polyacrylate by coextrustion and interfacial precipitation. Biotechnology and Bioengineering, 1987, 29, 1135-1143.                                  | 3.3  | 63        |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Heparinized styrene-butadiene-styrene elastomers. Journal of Biomedical Materials Research Part B,<br>1979, 13, 347-364.                                                                                                   | 3.1  | 62        |
| 20 | Dopamine secretion by PC12 cells microencapsulated in a hydroxyethyl methacrylate-methyl methacrylate copolymer. Biomaterials, 1996, 17, 267-275.                                                                          | 11.4 | 59        |
| 21 | Does surface chemistry affect thrombogenicity of surface modified polymers?. Journal of Biomedical<br>Materials Research Part B, 2001, 55, 447-459.                                                                        | 3.1  | 58        |
| 22 | Fabrication of cells containing gel modules to assemble modular tissue-engineered constructs.<br>Nature Protocols, 2006, 1, 2963-2969.                                                                                     | 12.0 | 58        |
| 23 | Leukocyte activation and leukocyte procoagulant activities after blood contact with polystyrene and polyethylene glycol–immobilized polystyrene beads. Translational Research, 2001, 137, 345-355.                         | 2.3  | 52        |
| 24 | The thrombogenicity of human umbilical vein endothelial cell seeded collagen modules. Biomaterials,<br>2008, 29, 2453-2463.                                                                                                | 11.4 | 52        |
| 25 | Endothelial cell behaviour within a microfluidic mimic of the flow channels of a modular tissue engineered construct. Biomedical Microdevices, 2011, 13, 69-87.                                                            | 2.8  | 51        |
| 26 | A Modular Approach to Cardiac Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 3207-3218.                                                                                                                        | 3.1  | 47        |
| 27 | Anti-microRNA-378a Enhances Wound Healing Process by Upregulating Integrin Beta-3 and Vimentin.<br>Molecular Therapy, 2014, 22, 1839-1850.                                                                                 | 8.2  | 46        |
| 28 | Cotransplantation of Adipose-Derived Mesenchymal Stromal Cells and Endothelial Cells in a Modular<br>Construct Drives Vascularization in SCID/bg Mice. Tissue Engineering - Part A, 2012, 18, 1628-1641.                   | 3.1  | 45        |
| 29 | Design and Fabrication of Sub-mm-Sized Modules Containing Encapsulated Cells for Modular Tissue<br>Engineering. Tissue Engineering, 2007, 13, 1069-1078.                                                                   | 4.6  | 44        |
| 30 | Viability and protein secretion from human Hepatoma (HepG2) cells encapsulated in 400-?m<br>polyacrylate microcapsules by submerged nozzle-liquid jet extrusion. Biotechnology and<br>Bioengineering, 1994, 44, 1199-1204. | 3.3  | 43        |
| 31 | Bone Marrow-Derived Mesenchymal Stromal Cells Enhance Chimeric Vessel Development Driven by<br>Endothelial Cell-Coated Microtissues. Tissue Engineering - Part A, 2012, 18, 285-294.                                       | 3.1  | 43        |
| 32 | Morphological assessment of hepatoma cells (HepG2) microencapsulated in a HEMA-MMA copolymer with and without Matrigel. Journal of Biomedical Materials Research Part B, 1992, 26, 1401-1418.                              | 3.1  | 39        |
| 33 | Microencapsulation of Normal and Transfected L929 Fibroblasts in a HEMA-MMA Copolymer. Tissue<br>Engineering, 2000, 6, 139-149.                                                                                            | 4.6  | 39        |
| 34 | Effect of methacrylic acid beads on the sonic hedgehog signaling pathway and macrophage polarization in a subcutaneous injection mouse model. Biomaterials, 2016, 98, 203-214.                                             | 11.4 | 39        |
| 35 | Methylation of Poloxamine for Enhanced Cell Adhesion. Biomacromolecules, 2006, 7, 331-338.                                                                                                                                 | 5.4  | 38        |
| 36 | Modular tissue engineering: fabrication of a gelatin-based construct. Journal of Tissue Engineering<br>and Regenerative Medicine, 2007, 1, 136-145.                                                                        | 2.7  | 38        |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | An Artificial Endocrine Pancreas Containing Cultured Islets of Langerhans. Artificial Organs, 1980, 4,<br>275-278.                                                                                                   | 1.9  | 38        |
| 38 | Functionalized Scaffold-mediated Interleukin 10 Gene Delivery Significantly Improves Survival Rates of Stem Cells In Vivo. Molecular Therapy, 2011, 19, 969-978.                                                     | 8.2  | 38        |
| 39 | The role of insulin growth factor-1 on the vascular regenerative effect of MAA coated disks and macrophage-endothelial cell crosstalk. Biomaterials, 2017, 144, 199-210.                                             | 11.4 | 38        |
| 40 | Preparation and thrombogenicity of alkylated polyvinyl alcohol coated tubing. Journal of Biomedical<br>Materials Research Part B, 1992, 26, 577-592.                                                                 | 3.1  | 37        |
| 41 | Injectable and inherently vascularizing semi-interpenetrating polymer network for delivering cells to the subcutaneous space. Biomaterials, 2017, 131, 27-35.                                                        | 11.4 | 37        |
| 42 | Injectable and degradable methacrylic acid hydrogel alters macrophage response in skeletal muscle.<br>Biomaterials, 2019, 223, 119477.                                                                               | 11.4 | 37        |
| 43 | Endothelialized collagen based pseudo-islets enables tuneable subcutaneous diabetes therapy.<br>Biomaterials, 2020, 232, 119710.                                                                                     | 11.4 | 37        |
| 44 | Parallel flow arteriovenous shunt for theex vivo evaluation of heparinized materials. Journal of<br>Biomedical Materials Research Part B, 1985, 19, 161-178.                                                         | 3.1  | 36        |
| 45 | In vitro platelet interactions with a heparin-polyvinyl alcohol hydrogel. Journal of Biomedical<br>Materials Research Part B, 1989, 23, 399-415.                                                                     | 3.1  | 36        |
| 46 | Interpenetrating Alginate-Collagen Polymer Network Microspheres for Modular Tissue Engineering.<br>ACS Biomaterials Science and Engineering, 2018, 4, 3704-3712.                                                     | 5.2  | 36        |
| 47 | Material-induced up-regulation of leukocyte CD11b during whole blood contact: Material differences and a role for complement. , 1996, 32, 29-35.                                                                     |      | 35        |
| 48 | HEMA/MMMA microcapsule implants in hemiparkinsonian rat brain: biocompatibility assessment using<br>[3H]PK11195 as a marker for gliosis. Biomaterials, 1998, 19, 829-837.                                            | 11.4 | 34        |
| 49 | Innate and adaptive immune responses in tissue engineering. Seminars in Immunology, 2008, 20, 83-85.                                                                                                                 | 5.6  | 34        |
| 50 | Effectiveness factor and diffusion limitations in collagen gel modules containing HepG2 cells.<br>Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 119-129.                                         | 2.7  | 34        |
| 51 | Collagen/Poloxamine Hydrogels: Cytocompatibility of Embedded HepG2 Cells and Surface-Attached<br>Endothelial Cells. Tissue Engineering, 2005, 11, 1807-1816.                                                         | 4.6  | 31        |
| 52 | Chimeric Vessel Tissue Engineering Driven by Endothelialized Modules in Immunosuppressed<br>Sprague-Dawley Rats. Tissue Engineering - Part A, 2011, 17, 151-160.                                                     | 3.1  | 31        |
| 53 | Toward anIn VitroVasculature: Differentiation of Mesenchymal Stromal Cells Within an Endothelial<br>Cell-Seeded Modular Construct in a Microfluidic Flow Chamber. Tissue Engineering - Part A, 2012, 18,<br>744-756. | 3.1  | 31        |
| 54 | The profile of adsorbed plasma and serum proteins on methacrylic acid copolymer beads: Effect on complement activation. Biomaterials, 2017, 118, 74-83.                                                              | 11.4 | 31        |

| #  | Article                                                                                                                                                                                                                                    | IF        | CITATIONS     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|
| 55 | Metabolic activity of CHO fibroblasts in HEMA-MMA microcapsules. Biotechnology and Bioengineering, 1992, 39, 672-678.                                                                                                                      | 3.3       | 30            |
| 56 | Flow cytometric analysis of material-induced platelet activation in a canine model: Elevated microparticle levels and reduced platelet life span. , 1997, 37, 176-181.                                                                     |           | 30            |
| 57 | Poloxamine hydrogels with a quaternary ammonium modification to improve cell attachment. Journal<br>of Biomedical Materials Research - Part A, 2005, 75A, 295-307.                                                                         | 4.0       | 30            |
| 58 | Application of an Endothelialized Modular Construct for Islet Transplantation in Syngeneic and Allogeneic Immunosuppressed Rat Models. Tissue Engineering - Part A, 2011, 17, 2005-2015.                                                   | 3.1       | 30            |
| 59 | Microencapsulation of human fibroblasts in a water-insoluble polyacrylate. Biotechnology and<br>Bioengineering, 1987, 30, 954-962.                                                                                                         | 3.3       | 29            |
| 60 | The expression of sonic hedgehog in diabetic wounds following treatment with poly(methacrylic) Tj ETQq0 0 0 r                                                                                                                              | gBT/Qverl | lock 10 Tf 50 |
| 61 | A Preliminary Study of the Effect of Poly(Methacrylic Acid-Co-Methyl Methacrylate) Beads on<br>Angiogenesis in Rodent Skin Grafts and the Quality of the Panniculus Carnosus. Plastic and<br>Reconstructive Surgery, 2008, 122, 1361-1370. | 1.4       | 27            |
| 62 | The effect of a hydroxamic acid-containing polymer on active matrix metalloproteinases. Biomaterials, 2009, 30, 1890-1897.                                                                                                                 | 11.4      | 27            |
| 63 | A Novel Highâ€5peed Production Process to Create Modular Components for the Bottomâ€Up Assembly of<br>Largeâ€5cale Tissueâ€Engineered Constructs. Advanced Healthcare Materials, 2015, 4, 113-120.                                         | 7.6       | 27            |
| 64 | Permeability of a heparin-polyvinyl alcohol hydrogel to thrombin and antithrombin III. Journal of<br>Biomedical Materials Research Part B, 1988, 22, 673-685.                                                                              | 3.1       | 26            |
| 65 | Perfusion and characterization of an endothelial cell-seeded modular tissue engineered construct formed in a microfluidic remodeling chamber. Biomaterials, 2010, 31, 8254-8261.                                                           | 11.4      | 26            |
| 66 | Conformal Coating of Small Particles and Cell Aggregates at a Liquidâ€Liquid Interface. Annals of the<br>New York Academy of Sciences, 1999, 875, 126-134.                                                                                 | 3.8       | 25            |
| 67 | Design Criteria for a Modular Tissue-Engineered Construct. Tissue Engineering, 2007, 13, 1079-1089.                                                                                                                                        | 4.6       | 25            |
| 68 | Poly(butyl methacrylate-co-methacrylic acid) tissue engineering scaffold with pro-angiogenic potentialin vivo. Journal of Biomedical Materials Research - Part A, 2007, 82A, 265-273.                                                      | 4.0       | 24            |
| 69 | On the mechanism of poly(methacrylic acid –co– methyl methacrylate)-induced angiogenesis: Gene<br>expression analysis of dTHP-1 cells. Biomaterials, 2011, 32, 8957-8967.                                                                  | 11.4      | 23            |
| 70 | A scalable device-less biomaterial approach for subcutaneous islet transplantation. Biomaterials, 2021, 269, 120499.                                                                                                                       | 11.4      | 23            |
| 71 | Methacrylic acid-based hydrogels enhance skeletal muscle regeneration after volumetric muscle loss in mice. Biomaterials, 2021, 275, 120909.                                                                                               | 11.4      | 23            |
| 72 | Tissue factor and thrombomodulin expression on endothelial cell-seeded collagen modules for tissue<br>engineering. Journal of Biomedical Materials Research - Part A, 2007, 80A, 497-504.                                                  | 4.0       | 20            |

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Methacrylic acid copolymer coating of polypropylene mesh chamber improves subcutaneous islet<br>engraftment. Biomaterials, 2020, 259, 120324.                                                                                                         | 11.4 | 20        |
| 74 | Poly(methacrylic acidâ€ <i>co</i> â€methyl methacrylate) beads promote vascularization and wound repair<br>in diabetic mice. Journal of Biomedical Materials Research - Part A, 2010, 93A, 484-492.                                                   | 4.0  | 19        |
| 75 | Del-1 Overexpression in Endothelial Cells Increases Vascular Density in Tissue-Engineered Implants<br>Containing Endothelial Cells and Adipose-Derived Mesenchymal Stromal Cells. Tissue Engineering -<br>Part A, 2014, 20, 1235-1252.                | 3.1  | 19        |
| 76 | Structure of styrene–butadiene–styrene block copolymers by diffusion analysis. Journal of Polymer<br>Science, Polymer Physics Edition, 1977, 15, 1927-1935.                                                                                           | 1.0  | 18        |
| 77 | Fate of Thrombin and Thrombin-Antithrombin-III Complex Adsorbed to a Heparinized Biomaterial:<br>Analysis of the Enzyme-Inhibitor Complexes Displaced by Plasma. Thrombosis and Haemostasis, 1983, 50,<br>873-877.                                    | 3.4  | 18        |
| 78 | Degradable methacrylic acid-based synthetic hydrogel for subcutaneous islet transplantation.<br>Biomaterials, 2022, 281, 121342.                                                                                                                      | 11.4 | 18        |
| 79 | Methacrylic Acid Copolymer Coating Enhances Constructive Remodeling of Polypropylene Mesh by<br>Increasing the Vascular Response. Advanced Healthcare Materials, 2019, 8, 1900667.                                                                    | 7.6  | 17        |
| 80 | The effect of methacrylic acid in smooth coatings on dTHP1 and HUVEC gene expression. Biomaterials Science, 2014, 2, 1768-1778.                                                                                                                       | 5.4  | 16        |
| 81 | Unbiased phosphoproteomic method identifies the initial effects of a methacrylic acid copolymer on macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10673-10678.                              | 7.1  | 16        |
| 82 | Identification of Drugs that Regulate Dermal Stem Cells and Enhance Skin Repair. Stem Cell Reports, 2016, 6, 74-84.                                                                                                                                   | 4.8  | 15        |
| 83 | Measurement of the rate of thrombin production in human palsma in contact with different materials. Journal of Biomedical Materials Research Part B, 1992, 26, 675-693.                                                                               | 3.1  | 14        |
| 84 | Tumor necrosis factor (TNF?) production by rat peritoneal macrophages is not polyacrylate surface-chemistry dependent. , 1999, 46, 324-330.                                                                                                           |      | 14        |
| 85 | Effect of mouse VEGF <sub>164</sub> on the viability of hydroxyethyl methacrylate–methyl<br>methacrylateâ€microencapsulated cells <i>in vivo</i> : Bioluminescence imaging. Journal of Biomedical<br>Materials Research - Part A, 2008, 87A, 321-331. | 4.0  | 13        |
| 86 | Shh pathway in wounds in non-diabetic Shh-Cre-eGFP/Ptch1-LacZ mice treated with MAA beads.<br>Biomaterials, 2016, 102, 198-208.                                                                                                                       | 11.4 | 13        |
| 87 | A Poloxamine–Polylysine Acrylate Scaffold for Modular Tissue Engineering. Journal of Biomaterials<br>Science, Polymer Edition, 2011, 22, 2515-2528.                                                                                                   | 3.5  | 12        |
| 88 | Thrombin and albumin adsorption to PVA and heparin-PVA hydrogels. 2: Competition and displacement.<br>Journal of Biomedical Materials Research Part B, 1993, 27, 89-95.                                                                               | 3.1  | 11        |
| 89 | Functional Considerations in Tissueâ€Engineering Whole Organs. Annals of the New York Academy of Sciences, 2002, 961, 198-200.                                                                                                                        | 3.8  | 11        |
| 90 | Some aspects of the host response to methacrylic acid containing beads in a mouse air pouch. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2054-2062.                                                                                | 4.0  | 11        |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Absorption of benzene by open-cell polyurethane foams. Journal of Applied Polymer Science, 1980, 25, 829-839.                                                                                                       | 2.6 | 10        |
| 92  | IL-10 Secretion Increases Signal Persistence of HEMA-MMA–Microencapsulated Luciferase-Modified<br>CHO Fibroblasts in Mice. Tissue Engineering - Part A, 2009, 15, 127-136.                                          | 3.1 | 10        |
| 93  | Angiogenic Biomaterials to Promote Tissue Vascularization and Integration. Israel Journal of Chemistry, 2013, 53, 637-645.                                                                                          | 2.3 | 10        |
| 94  | Patency of Heparinized SBS Shunts at High Shear Rates. Biomaterials, Medical Devices, and Artificial<br>Organs, 1981, 9, 127-142.                                                                                   | 0.3 | 9         |
| 95  | Blood, guts and chemical engineering. Canadian Journal of Chemical Engineering, 1989, 67, 705-712.                                                                                                                  | 1.7 | 9         |
| 96  | Amidine surface modification of poly(acrylonitrileâ€≺i>coâ€vinyl chloride) reduces platelet adhesion.<br>Journal of Biomedical Materials Research - Part A, 2009, 89A, 780-790.                                     | 4.0 | 9         |
| 97  | Patterning Collagen/Poloxamine-Methacrylate Hydrogels for Tissue-Engineering-Inspired Microfluidic<br>and Laser Lithography Applications. Journal of Biomaterials Science, Polymer Edition, 2011, 22,<br>2499-2514. | 3.5 | 9         |
| 98  | In Vivo Remodelling of Vascularizing Engineered Tissues. Annals of Biomedical Engineering, 2015, 43, 1189-1200.                                                                                                     | 2.5 | 9         |
| 99  | Fate of modular cardiac tissue constructs in a syngeneic rat model. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1247-1258.                                                                    | 2.7 | 9         |
| 100 | Fabrication of Micro-tissues using Modules of Collagen Gel Containing Cells. Journal of Visualized Experiments, 2010, , .                                                                                           | 0.3 | 8         |
| 101 | Using Del-1 to Tip the Angiogenic Balance in Endothelial Cells in Modular Constructs. Tissue<br>Engineering - Part A, 2014, 20, 1222-1234.                                                                          | 3.1 | 8         |
| 102 | Collagen modules for <i>in situ</i> delivery of mesenchymal stromal cell-derived endothelial cells for improved angiogenesis. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 363-373.           | 2.7 | 8         |
| 103 | Absorption of dicumyl peroxide by extruded polyethylene: Difference between surface and bulk morphology. Journal of Applied Polymer Science, 1984, 29, 2383-2393.                                                   | 2.6 | 7         |
| 104 | Bone Marrow-Derived Macrophages Enhance Vessel Stability in Modular Engineered Tissues. Tissue<br>Engineering - Part A, 2019, 25, 911-923.                                                                          | 3.1 | 7         |
| 105 | Crystallinity and dicumyl peroxide diffusivity in low density polyethylene with different thermal histories. Journal of Applied Polymer Science, 1986, 31, 2195-2202.                                               | 2.6 | 6         |
| 106 | Video analysis of submerged jet microencapsulation using HEMAâ€MMA. Canadian Journal of Chemical<br>Engineering, 1996, 74, 518-525.                                                                                 | 1.7 | 6         |
| 107 | Perspective on hemocompatibility testing. Journal of Biomedical Materials Research Part B, 2001, 55, 445-446.                                                                                                       | 3.1 | 6         |
| 108 | Expression of matrix metalloproteinase-2 and -9 in exudates associated with polydimethyl siloxane and gelatin tubes implanted in mice. Journal of Biomedical Materials Research Part B, 2004, 71A, 226-232.         | 3.1 | 6         |

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Harnessing gene and drug delivery for vascularizing engineered tissue platforms. Drug Discovery<br>Today, 2016, 21, 1532-1539.                                                                                                              | 6.4  | 6         |
| 110 | Muted fibrosis from protected islets. Nature Biomedical Engineering, 2018, 2, 791-792.                                                                                                                                                      | 22.5 | 6         |
| 111 | Poly-Methacrylic Acid Cross-Linked with Collagen Accelerates Diabetic Wound Closure. ACS<br>Biomaterials Science and Engineering, 2020, 6, 6368-6377.                                                                                       | 5.2  | 6         |
| 112 | A model of insulin delivery by a controlled release micropump. Annals of Biomedical Engineering, 1986, 14, 257-276.                                                                                                                         | 2.5  | 5         |
| 113 | Production of uniform drops of viscous liquids using a coaxial airstream. Canadian Journal of Chemical Engineering, 1991, 69, 245-250.                                                                                                      | 1.7  | 5         |
| 114 | Preparation and characterization of alkylated poly(vinyl alcohol) hydrogels using alkyl halides.<br>Journal of Biomaterials Science, Polymer Edition, 1996, 7, 647-659.                                                                     | 3.5  | 5         |
| 115 | Promoting endogenous repair of skeletal muscle using regenerative biomaterials. Journal of<br>Biomedical Materials Research - Part A, 2021, 109, 2720-2739.                                                                                 | 4.0  | 5         |
| 116 | Structural Analysis by Diffusion Measurements: SBS Block Copolymers and Polyethylene. Advances in Chemistry Series, 1979, , 243-257.                                                                                                        | 0.6  | 4         |
| 117 | THE THROMBORESISTANCE OF A HEPARIN-POLYVINYL ALCOHOL HYDROGELâ€. Chemical Engineering Communications, 1984, 30, 141-154.                                                                                                                    | 2.6  | 4         |
| 118 | MMP levels in the response to degradable implants in the presence of a hydroxamateâ€based matrix<br>metalloproteinase sequestering biomaterial <i>in vivo</i> . Journal of Biomedical Materials Research -<br>Part A, 2010, 93A, 1368-1379. | 4.0  | 4         |
| 119 | The blood compatibility challenge: Editorial introduction. Acta Biomaterialia, 2019, 94, 1.                                                                                                                                                 | 8.3  | 4         |
| 120 | Hydraulic permeability of open-cell hydrophilic polyurethane foams. Journal of Applied Polymer<br>Science, 1980, 25, 2167-2178.                                                                                                             | 2.6  | 3         |
| 121 | X-Ray photoelectron spectroscopy (XPS) surface analysis of HEMA-MMA microcapsules. Journal of<br>Biomaterials Science, Polymer Edition, 1997, 8, 655-665.                                                                                   | 3.5  | 3         |
| 122 | Stain length passive dosimeters. AIHA Journal, 1982, 43, 820-824.                                                                                                                                                                           | 0.4  | 2         |
| 123 | Sorption of carbon tetrachloride in low-density polyethylene pellets. Journal of Applied Polymer<br>Science, 1986, 31, 2109-2115.                                                                                                           | 2.6  | 2         |
| 124 | Chapter II.5.2 $\hat{a}$ €" Nonthrombogenic Treatments and Strategies. , 2012, , 1488-1509.                                                                                                                                                 |      | 2         |
| 125 | Application of Modular Therapy for Renoprotection in Experimental Chronic Kidney Disease. Tissue<br>Engineering - Part A, 2015, 21, 1963-1972.                                                                                              | 3.1  | 1         |
| 126 | Hypoxia-Inducible Factor Drives Vascularization of Modularly Assembled Engineered Tissue. Tissue<br>Engineering - Part A, 2019, 25, 1127-1136.                                                                                              | 3.1  | 1         |

| #   | Article                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Nonthrombogenic Treatments and Strategies. , 2020, , 515-537.                                                                               |      | 1         |
| 128 | The Modular Approach. , 2013, , 119-148.                                                                                                    |      | 1         |
| 129 | Vascularized Organoid Engineered by Modular Assembly Enables Blood Perfusion. FASEB Journal, 2006, 20, A436.                                | 0.5  | 1         |
| 130 | Methacrylic Acid-Based Regenerative Biomaterials: Explorations into the MAAgic. Regenerative Engineering and Translational Medicine, 0, , . | 2.9  | 1         |
| 131 | Hearts by design. Science, 2022, 377, 148-150.                                                                                              | 12.6 | 1         |
| 132 | 006 Development of a Novel Matrix Metalloproteinase?Inhibiting Wound Dressing. Wound Repair and Regeneration, 2004, 12, A4-A4.              | 3.0  | 0         |
| 133 | Commentary on: "In Vivo Remodelling of Vascularizing Engineered Tissuesâ€: Annals of Biomedical<br>Engineering, 2015, 43, 1271-1271.        | 2.5  | 0         |
| 134 | Endothelialized collagen modules for islet tissue engineering. , 2020, , 277-287.                                                           |      | 0         |
| 135 | P.160: Immune Response to Vascularizing Subcutaneous Engineered Islet Grafts. Transplantation, 2021, 105, S67-S67.                          | 1.0  | 0         |