## Peter K Stansby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4096402/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                | lF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | DualSPHysics: from fluid dynamics to multiphysics problems. Computational Particle Mechanics, 2022, 9, 867-895.                                                                                                                                                        | 3.0 | 131       |
| 2  | Modified dynamic boundary conditions (mDBC) for general-purpose smoothed particle hydrodynamics<br>(SPH): application to tank sloshing, dam break and fish pass problems. Computational Particle<br>Mechanics, 2022, 9, 1-15.                                          | 3.0 | 59        |
| 3  | Total wave power absorption by a multi-float wave energy converter and a semi-submersible wind<br>platform with a fast far field model for arrays. Journal of Ocean Engineering and Marine Energy, 2022,<br>8, 43-63.                                                  | 1.7 | 7         |
| 4  | Harmonic-induced wave breaking due to abrupt depth transitions: An experimental and numerical study. Coastal Engineering, 2022, 171, 104041.                                                                                                                           | 4.0 | 9         |
| 5  | Modelling marine turbine arrays in tidal flows. Journal of Hydraulic Research/De Recherches<br>Hydrauliques, 2022, 60, 187-204.                                                                                                                                        | 1.7 | 10        |
| 6  | An experimental assessment of the effect of current on wave buoy measurements. Coastal Engineering, 2022, 174, 104114.                                                                                                                                                 | 4.0 | 2         |
| 7  | Turbulent length scales and budgets of Reynolds stress-transport for open-channel flows; friction<br>Reynolds numbers R <sub>eï,,</sub> = 150, 400 and 1020. Journal of Hydraulic Research/De Recherches<br>Hydrauliques, 2021, 59, 36-50.                             | 1.7 | 24        |
| 8  | Non-causal Linear Optimal Control With Adaptive Sliding Mode Observer for Multi-Body Wave Energy<br>Converters. IEEE Transactions on Sustainable Energy, 2021, 12, 568-577.                                                                                            | 8.8 | 11        |
| 9  | Experimentally validated study of the impact of operating strategies on power efficiency of a turbine array in a bi-directional tidal channel. Renewable Energy, 2021, 163, 1408-1426.                                                                                 | 8.9 | 6         |
| 10 | Largeâ€scale offshore wind energy installation in northwest India: Assessment of wind resource using<br>Weather Research and Forecasting and levelized cost of energy. Wind Energy, 2021, 24, 174-192.                                                                 | 4.2 | 32        |
| 11 | High-order velocity and pressure wall boundary conditions in Eulerian incompressible SPH. Journal of Computational Physics, 2021, 434, 109793.                                                                                                                         | 3.8 | 13        |
| 12 | Hydraulic Power Take-Off concept for the M4 Wave Energy Converter. Applied Ocean Research, 2021,<br>106, 102462.                                                                                                                                                       | 4.1 | 8         |
| 13 | Reduction of wave-induced pitch motion of a semi-sub wind platform by balancing heave excitation with pumping between floats. Journal of Ocean Engineering and Marine Energy, 2021, 7, 157-172.                                                                        | 1.7 | 2         |
| 14 | High-Capacity Wave Energy Conversion by Multi-Float, Multi-PTO, Control and Prediction: Generalized<br>State-Space Modelling With Linear Optimal Control and Arbitrary Headings. IEEE Transactions on<br>Sustainable Energy, 2021, 12, 2123-2131.                      | 8.8 | 14        |
| 15 | Linear Non-Causal Optimal Control of an Attenuator Type Wave Energy Converter M4. IEEE<br>Transactions on Sustainable Energy, 2020, 11, 1278-1286.                                                                                                                     | 8.8 | 25        |
| 16 | The performance of the three-float M4 wave energy converter off Albany, on the south coast of western Australia, compared to Orkney (EMEC) in the U.K Renewable Energy, 2020, 146, 444-459.                                                                            | 8.9 | 14        |
| 17 | An incompressible smoothed particle hydrodynamics scheme for Newtonian/nonâ€Newtonian<br>multiphase flows including semiâ€analytical solutions for twoâ€phase inelastic Poiseuille flows.<br>International Journal for Numerical Methods in Fluids, 2020, 92, 703-726. | 1.6 | 8         |
| 18 | Review of smoothed particle hydrodynamics: towards converged Lagrangian flow modelling.<br>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476,<br>20190801.                                                                | 2.1 | 76        |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Unsteady thrust on an oscillating wind turbine: Comparison of blade-element momentum theory with actuator-line CFD. Journal of Fluids and Structures, 2020, 98, 103141.                                                        | 3.4  | 19        |
| 20 | Study of Snap Loads for Idealized Mooring Configurations with a Buoy, Inextensible and Elastic Cable Combinations for the Multi-Float M4 Wave Energy Converter. Water (Switzerland), 2020, 12, 2818.                           | 2.7  | 6         |
| 21 | A generic linear non-causal optimal control framework integrated with wave excitation force<br>prediction for multi-mode wave energy converters with application to M4. Applied Ocean Research,<br>2020, 97, 102056.           | 4.1  | 15        |
| 22 | Efficiency and Survivability of a Floating Oscillating Water Column Wave Energy Converter Moored to the Seabed: An Overview of the EsflOWC MaRINET2 Database. Water (Switzerland), 2020, 12, 992.                              | 2.7  | 6         |
| 23 | Hydrodynamics of the multi-float wave energy converter M4 with slack moorings: Time domain linear<br>diffraction-radiation modelling with mean force and experimental comparison. Applied Ocean<br>Research, 2020, 97, 102070. | 4.1  | 16        |
| 24 | Linear optimal control on a multi-PTO wave energy converter M4 with performance analysis. , 2020, , 238-244.                                                                                                                   |      | 1         |
| 25 | Slack-moored semi-submersible wind floater with damping plates in waves: Linear diffraction<br>modelling with mean forces and experiments. Journal of Fluids and Structures, 2019, 90, 410-431.                                | 3.4  | 9         |
| 26 | The 6-float wave energy converter M4: Ocean basin tests giving capture width, response and energy yield for several sites. Renewable and Sustainable Energy Reviews, 2019, 104, 307-318.                                       | 16.4 | 36        |
| 27 | Co-located deployment of offshore wind turbines with tidal stream turbine arrays for improved cost of electricity generation. Renewable and Sustainable Energy Reviews, 2019, 104, 492-503.                                    | 16.4 | 26        |
| 28 | Numerical wave basin using incompressible smoothed particle hydrodynamics (ISPH) on a single GPU with vertical cylinder test cases. Computers and Fluids, 2019, 179, 543-562.                                                  | 2.5  | 32        |
| 29 | Flexible slender body fluid interaction: Vector-based discrete element method with Eulerian smoothed particle hydrodynamics. Computers and Fluids, 2019, 179, 563-578.                                                         | 2.5  | 18        |
| 30 | Eulerian weakly compressible smoothed particle hydrodynamics (SPH) with the immersed boundary method for thin slender bodies. Journal of Fluids and Structures, 2019, 84, 263-282.                                             | 3.4  | 25        |
| 31 | Energy-maximizing control of pitch type wave energy converter M4. , 2019, , .                                                                                                                                                  |      | Ο         |
| 32 | Incompressible SPH (ISPH) with fast Poisson solver on a GPU. Computer Physics Communications, 2018, 226, 81-103.                                                                                                               | 7.5  | 74        |
| 33 | Co-located offshore wind and tidal stream turbines: Assessment of energy yield and loading.<br>Renewable Energy, 2018, 118, 627-643.                                                                                           | 8.9  | 20        |
| 34 | An Eulerian–Lagrangian incompressible SPH formulation (ELI-SPH) connected with a sharp interface.<br>Computer Methods in Applied Mechanics and Engineering, 2018, 329, 532-552.                                                | 6.6  | 44        |
| 35 | Actuator-line CFD modelling of tidal-stream turbines in arrays. Journal of Ocean Engineering and Marine Energy, 2018, 4, 259-271.                                                                                              | 1.7  | 35        |
| 36 | New massively parallel scheme for Incompressible Smoothed Particle Hydrodynamics (ISPH) for highly nonlinear and distorted flow. Computer Physics Communications, 2018, 233, 16-28.                                            | 7.5  | 45        |

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Drag, added mass and radiation damping of oscillating vertical cylindrical bodies in heave and surge<br>in still water. Journal of Fluids and Structures, 2018, 82, 343-356.                                                                                                | 3.4 | 54        |
| 38 | On the Coupling of Incompressible SPH with a Finite Element Potential Flow Solver for Nonlinear Free-Surface Flows. International Journal of Offshore and Polar Engineering, 2018, 28, 248-254.                                                                             | 0.8 | 15        |
| 39 | Extreme motion and response statistics for survival of the three-float wave energy converter M4 in intermediate water depth. Journal of Fluid Mechanics, 2017, 813, 175-204.                                                                                                | 3.4 | 47        |
| 40 | Fluctuating loads on a tidal turbine due to velocity shear and turbulence: Comparison of CFD with field data. Renewable Energy, 2017, 112, 235-246.                                                                                                                         | 8.9 | 76        |
| 41 | Landslides and tsunamis predicted by incompressible smoothed particle hydrodynamics (SPH) with application to the 1958 Lituya Bay event and idealized experiment. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20160674. | 2.1 | 30        |
| 42 | Large capacity multi-float configurations for the wave energy converter M4 using a time-domain linear diffraction model. Applied Ocean Research, 2017, 68, 53-64.                                                                                                           | 4.1 | 49        |
| 43 | Linear diffraction analysis of the three-float multi-mode wave energy converter M4 for power capture and structural analysis in irregular waves with experimental validation. Journal of Ocean Engineering and Marine Energy, 2017, 3, 51-68.                               | 1.7 | 25        |
| 44 | Flow and Bed-Shear Magnification Downstream of a Barrage with Swirl Generated in Ducts by Stators and Rotors. Journal of Hydraulic Engineering, 2017, 143, 06016023.                                                                                                        | 1.5 | 4         |
| 45 | A multi-phase particle shifting algorithm for SPH simulations of violent hydrodynamics with a large number of particles. Journal of Hydraulic Research/De Recherches Hydrauliques, 2017, 55, 143-162.                                                                       | 1.7 | 78        |
| 46 | Comparison of a RANS blade element model for tidal turbine arrays with laboratory scale measurements of wake velocity and rotor thrust. Journal of Fluids and Structures, 2016, 64, 87-106.                                                                                 | 3.4 | 72        |
| 47 | High-order Eulerian incompressible smoothed particle hydrodynamics with transition to Lagrangian free-surface motion. Journal of Computational Physics, 2016, 326, 290-311.                                                                                                 | 3.8 | 60        |
| 48 | Oscillatory flows around a headland by 3D modelling with hydrostatic pressure and implicit bed<br>shear stress comparing with experiment and depth-averaged modelling. Coastal Engineering, 2016, 116,<br>1-14.                                                             | 4.0 | 13        |
| 49 | Linear diffraction analysis for optimisation of the three-float multi-mode wave energy converter M4<br>in regular waves including small arrays. Journal of Ocean Engineering and Marine Energy, 2016, 2,<br>429-438.                                                        | 1.7 | 18        |
| 50 | Foreword to special issue on particle methods for flow modeling in ocean engineering. Journal of<br>Ocean Engineering and Marine Energy, 2016, 2, 249-250.                                                                                                                  | 1.7 | 1         |
| 51 | Fixed and moored bodies in steep and breaking waves using SPH with the Froude–Krylov<br>approximation. Journal of Ocean Engineering and Marine Energy, 2016, 2, 331-354.                                                                                                    | 1.7 | 23        |
| 52 | Decadal variability of wave power production in the North-East Atlantic and North Sea for the M4 machine. Renewable Energy, 2016, 91, 442-450.                                                                                                                              | 8.9 | 15        |
| 53 | A coupled hydrodynamic–structural model of the M4 wave energy converter. Journal of Fluids and Structures, 2016, 63, 77-96.                                                                                                                                                 | 3.4 | 31        |
| 54 | Fast optimisation of tidal stream turbine positions for power generation in small arrays with low<br>blockage based on superposition of self-similar far-wake velocity deficit profiles. Renewable Energy,<br>2016, 92, 366-375.                                            | 8.9 | 44        |

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Incompressible–compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics (SPH). Journal of Computational Physics, 2016, 309, 129-147.                                                                                               | 3.8 | 71        |
| 56 | Variable resolution for SPH in three dimensions: Towards optimal splitting and coalescing for dynamic adaptivity. Computer Methods in Applied Mechanics and Engineering, 2016, 300, 442-460.                                                                                | 6.6 | 73        |
| 57 | Modelling of the 3-float WEC M4 with nonlinear PTO options and longer bow beam. , 2016, , .                                                                                                                                                                                 |     | 4         |
| 58 | Energy yield for co-located offshore wind and tidal stream turbines. , 2016, , .                                                                                                                                                                                            |     | 2         |
| 59 | Numerical predictions of water–air wave slam using incompressible–compressible smoothed particle<br>hydrodynamics. Applied Ocean Research, 2015, 49, 57-71.                                                                                                                 | 4.1 | 74        |
| 60 | Three-float broad-band resonant line absorber with surge for wave energy conversion. Renewable<br>Energy, 2015, 78, 132-140.                                                                                                                                                | 8.9 | 53        |
| 61 | An incompressible SPH scheme with improved pressure predictions for free-surface generalised Newtonian flows. Journal of Non-Newtonian Fluid Mechanics, 2015, 218, 1-15.                                                                                                    | 2.4 | 38        |
| 62 | Experimental study of the mean wake of a tidal stream rotor in a shallow turbulent flow. Journal of<br>Fluids and Structures, 2015, 54, 235-246.                                                                                                                            | 3.4 | 87        |
| 63 | Multi-phase SPH modelling of violent hydrodynamics on GPUs. Computer Physics Communications, 2015, 196, 304-316.                                                                                                                                                            | 7.5 | 89        |
| 64 | Capture width of the three-float multi-mode multi-resonance broadband wave energy line absorber<br>M4 from laboratory studies with irregular waves of different spectral shape and directional spread.<br>Journal of Ocean Engineering and Marine Energy, 2015, 1, 287-298. | 1.7 | 43        |
| 65 | Wave energy conversion with high capture width by the three-float line absorber M4. , 2015, , 393-397.                                                                                                                                                                      |     | 3         |
| 66 | Experimental study of extreme thrust on a tidal stream rotor due to turbulent flow and with opposing waves. Journal of Fluids and Structures, 2014, 51, 354-361.                                                                                                            | 3.4 | 47        |
| 67 | A simple slidingâ€mesh interface procedure and its application to the CFD simulation of a tidalâ€stream turbine. International Journal for Numerical Methods in Fluids, 2014, 74, 250-269.                                                                                  | 1.6 | 68        |
| 68 | Optimisation of a clutch-rectified power take off system for a heaving wave energy device in irregular waves with experimental comparison. International Journal of Marine Energy, 2014, 8, 1-16.                                                                           | 1.8 | 18        |
| 69 | A correction for balancing discontinuous bed slopes in twoâ€dimensional smoothed particle<br>hydrodynamics shallow water modeling. International Journal for Numerical Methods in Fluids, 2013,<br>71, 850-872.                                                             | 1.6 | 19        |
| 70 | Flow Due to Multiple Jets Downstream of a Barrage: Experiments, 3D Computational Fluid Dynamics, and Depth-Averaged Modeling. Journal of Hydraulic Engineering, 2013, 139, 754-762.                                                                                         | 1.5 | 11        |
| 71 | Coastal hydrodynamics – present and future. Journal of Hydraulic Research/De Recherches<br>Hydrauliques, 2013, 51, 341-350.                                                                                                                                                 | 1.7 | 20        |
| 72 | Random wave runup and overtopping a steep sea wall: Shallow-water and Boussinesq modelling with generalised breaking and wall impact algorithms validated against laboratory and field measurements. Coastal Engineering, 2013, 74, 33-49.                                  | 4.0 | 51        |

| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Turbulent flow and loading on a tidal stream turbine by LES and RANS. International Journal of Heat<br>and Fluid Flow, 2013, 43, 96-108.                                                                                                                            | 2.4 | 104       |
| 74 | SPH for 3D floating bodies using variable mass particle distribution. International Journal for Numerical Methods in Fluids, 2013, 72, 427-452.                                                                                                                     | 1.6 | 85        |
| 75 | Variable resolution for SPH: A dynamic particle coalescing and splitting scheme. Computer Methods in Applied Mechanics and Engineering, 2013, 256, 132-148.                                                                                                         | 6.6 | 184       |
| 76 | Shallow water SPH for flooding with dynamic particle coalescing and splitting. Advances in Water Resources, 2013, 58, 10-23.                                                                                                                                        | 3.8 | 41        |
| 77 | Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised<br>Fickian smoothing applied to body–water slam and efficient wave–body interaction. Computer<br>Methods in Applied Mechanics and Engineering, 2013, 265, 163-173. | 6.6 | 185       |
| 78 | Breaking wave loads on monopiles for offshore wind turbines and estimation of extreme overturning moment. IET Renewable Power Generation, 2013, 7, 514-520.                                                                                                         | 3.1 | 26        |
| 79 | An integrated model system for coastal flood prediction with a case history for <scp>W</scp> alcott,<br><scp>UK</scp> , on 9 <scp>N</scp> ovember 2007. Journal of Flood Risk Management, 2013, 6, 229-252.                                                         | 3.3 | 13        |
| 80 | SPH Modeling of Shallow Flow with Open Boundaries for Practical Flood Simulation. Journal of<br>Hydraulic Engineering, 2012, 138, 530-541.                                                                                                                          | 1.5 | 106       |
| 81 | Smoothed Particle Hydrodynamics: Approximate zero onsistent 2â€D boundary conditions and still shallowâ€water tests. International Journal for Numerical Methods in Fluids, 2012, 69, 226-253.                                                                      | 1.6 | 51        |
| 82 | Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing. International Journal for Numerical Methods in Fluids, 2012, 69, 1377-1410.                                                                                  | 1.6 | 72        |
| 83 | Extreme values of coastal wave overtopping accounting for climate change and sea level rise. Coastal Engineering, 2012, 65, 27-37.                                                                                                                                  | 4.0 | 79        |
| 84 | Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised<br>diffusion-based algorithm for stability and validations for impulsive flows and propagating waves.<br>Journal of Computational Physics, 2012, 231, 1499-1523.               | 3.8 | 496       |
| 85 | Wave body interaction in 2D using smoothed particle hydrodynamics (SPH) with variable particle mass. International Journal for Numerical Methods in Fluids, 2012, 68, 686-705.                                                                                      | 1.6 | 86        |
| 86 | Review of Experimental Data on Incompressible Turbulent Round Jets. Flow, Turbulence and Combustion, 2011, 87, 79-114.                                                                                                                                              | 2.6 | 49        |
| 87 | On the approximation of local efflux/influx bed discharge in the shallow water equations based on a wave propagation algorithm. International Journal for Numerical Methods in Fluids, 2011, 66, 1295-1314.                                                         | 1.6 | 10        |
| 88 | Experimental measurement of focused wave group and solitary wave overtopping. Journal of<br>Hydraulic Research/De Recherches Hydrauliques, 2011, 49, 450-464.                                                                                                       | 1.7 | 43        |
| 89 | Coupled wave action and shallow-water modelling for random wave runup on a slope. Journal of Hydraulic Research/De Recherches Hydrauliques, 2011, 49, 515-522.                                                                                                      | 1.7 | 11        |
| 90 | The impact of sea level rise and climate change on inshore wave climate: A case study for East Anglia (UK). Coastal Engineering, 2010, 57, 973-984.                                                                                                                 | 4.0 | 92        |

| #   | Article                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Experimental measurements of irregular wave interaction factors in closely spaced arrays. IET<br>Renewable Power Generation, 2010, 4, 628.                            | 3.1 | 33        |
| 92  | Simulation of caisson breakwater movement using 2-D SPH. Journal of Hydraulic Research/De<br>Recherches Hydrauliques, 2010, 48, 135-141.                              | 1.7 | 92        |
| 93  | SPH MODELING OF FLOATING BODIES IN THE SURF ZONE. , 2009, , .                                                                                                         |     | 5         |
| 94  | Integrated analysis of risks of coastal flooding and cliff erosion under scenarios of long term change. Climatic Change, 2009, 95, 249-288.                           | 3.6 | 205       |
| 95  | Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. Journal of Computational Physics, 2009, 228, 6703-6725.        | 3.8 | 532       |
| 96  | Fundamental study for morphodynamic modelling: Sand mounds in oscillatory flows. Coastal<br>Engineering, 2009, 56, 408-418.                                           | 4.0 | 5         |
| 97  | Limiting heave response of a wave energy device by draft adjustment with upper surface immersion.<br>Applied Ocean Research, 2009, 31, 282-289.                       | 4.1 | 26        |
| 98  | INTERPRETATION OF LARGE-SCALE MORPHODYNAMIC LABORATORY EXPERIMENTS: SPOIL HEAPS AND SANDBANKS. , 2009, , .                                                            |     | 0         |
| 99  | Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. Journal of Computational Physics, 2008, 227, 8417-8436. | 3.8 | 473       |
| 100 | Bed-Load Sediment Transport on Large Slopes: Model Formulation and Implementation within a RANS<br>Solver. Journal of Hydraulic Engineering, 2008, 134, 1440-1451.    | 1.5 | 33        |
| 101 | The Tyndall Centre Coastal Simulator and Interface (CoastS). , 2008, , 445-454.                                                                                       |     | 4         |
| 102 | Hydraulic jump analysis for a Bingham fluid. Journal of Hydraulic Research/De Recherches<br>Hydrauliques, 2007, 45, 555-562.                                          | 1.7 | 3         |
| 103 | Boundary layer structure of oscillatory open-channel shallow flows over smooth and rough beds.<br>Experiments in Fluids, 2007, 42, 719-736.                           | 2.4 | 20        |
| 104 | LONG-TERM PREDICTION OF NEARSHORE WAVE CLIMATE WITH AN APPLICATION TO CLIFF EROSION. , 2007, , .                                                                      |     | 0         |
| 105 | NUMERICAL MODELLING OF PARTICLE-LADEN BUOYANT JETS. , 2007, , .                                                                                                       |     | 0         |
| 106 | A FUNDAMENTAL EXPERIMENTAL AND NUMERICAL STUDY OF LARGE SCALE MORPHODYNAMICS OF SANDBANKS IN STEADY AND OSCILLATORY FLOWS. , 2007, , .                                |     | 0         |
| 107 | Solitary wave transformation, breaking and run-up at a beach. Proceedings of the Institution of Civil<br>Engineers: Maritime Engineering, 2006, 159, 97-105.          | 0.2 | 39        |
| 108 | Limitations of Depth-Averaged Modeling for Shallow Wakes. Journal of Hydraulic Engineering, 2006, 132, 737-740.                                                       | 1.5 | 32        |

| #   | Article                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Kinematics and depth-integrated terms in surf zone waves from laboratory measurement. Journal of Fluid Mechanics, 2005, 529, 279-310.                                                 | 3.4 | 61        |
| 110 | PHASE INVERSION AND THE IDENTIFICATION OF HARMONIC STRUCTURE IN COASTAL ENGINEERING EXPERIMENTS. , 2005, , .                                                                          |     | 1         |
| 111 | Modelling directional random wave propagation inshore. Proceedings of the Institution of Civil<br>Engineers: Maritime Engineering, 2004, 157, 123-131.                                | 0.2 | 17        |
| 112 | A mixing-length model for shallow turbulent wakes. Journal of Fluid Mechanics, 2003, 495, 369-384.                                                                                    | 3.4 | 57        |
| 113 | Solitary wave run up and overtopping by a semi-implicit finite-volume shallow-water Boussinesq<br>model. Journal of Hydraulic Research/De Recherches Hydrauliques, 2003, 41, 639-647. | 1.7 | 48        |
| 114 | Reynolds Stresses in Spilling and Plunging Breaking Waves. , 2003, , .                                                                                                                |     | 0         |
| 115 | On the orbital response of a rotating cylinder in a current. Journal of Fluid Mechanics, 2001, 439, 87-108.                                                                           | 3.4 | 31        |
| 116 | Wake formation around islands in oscillatory laminar shallow-water flows. Part 1. Experimental investigation. Journal of Fluid Mechanics, 2001, 429, 217-238.                         | 3.4 | 32        |
| 117 | Wake formation around islands in oscillatory laminar shallow-water flows. Part 2.<br>Three-dimensional boundary-layer modelling. Journal of Fluid Mechanics, 2001, 429, 239-254.      | 3.4 | 22        |
| 118 | An assessment of k–ε and k–l turbulence models for a wide range of oscillatory rough bed flows.<br>Journal of Hydroinformatics, 2000, 2, 221-234.                                     | 2.4 | 6         |
| 119 | 2D shallow water flow model for the hydraulic jump. International Journal for Numerical Methods<br>in Fluids, 1999, 29, 375-387.                                                      | 1.6 | 28        |
| 120 | Shallow-water flow solver with non-hydrostatic pressure: 2D vertical plane problems. International<br>Journal for Numerical Methods in Fluids, 1998, 28, 541-563.                     | 1.6 | 115       |
| 121 | The initial stages of dam-break flow. Journal of Fluid Mechanics, 1998, 374, 407-424.                                                                                                 | 3.4 | 161       |
| 122 | The initial stages of dam-break flow. Journal of Fluid Mechanics, 1998, 374, 407-424.                                                                                                 | 3.4 | 209       |
| 123 | Shallowâ€water flow solver with nonâ€hydrostatic pressure: 2D vertical plane problems. International<br>Journal for Numerical Methods in Fluids, 1998, 28, 541-563.                   | 1.6 | 2         |
| 124 | Shallow-Water Flow around Model Conical Islands of Small Side Slope. I: Surface Piercing. Journal of<br>Hydraulic Engineering, 1997, 123, 1057-1067.                                  | 1.5 | 57        |
| 125 | Shallow-Water Flow around Model Conical Islands of Small Side Slope. II: Submerged. Journal of Hydraulic Engineering, 1997, 123, 1068-1077.                                           | 1.5 | 55        |
| 126 | SEMI-IMPLICIT FINITE VOLUME SHALLOW-WATER FLOW AND SOLUTE TRANSPORT SOLVER WITHk-É,<br>TURBULENCE MODEL. International Journal for Numerical Methods in Fluids, 1997, 25, 285-313.    | 1.6 | 38        |

| #   | Article                                                                                                                                                                     | IF       | CITATIONS     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|
| 127 | MODELLING SHALLOW WATER FLOW AROUND PILE GROUPS Proceedings of the Institution of Civil Engineers: Water, Maritime and Energy, 1996, 118, 226-236.                          | 0.6      | 18            |
| 128 | A semi-implicit lagrangian scheme for 3D shallow water flow with a two-layer turbulence model.<br>International Journal for Numerical Methods in Fluids, 1995, 20, 115-133. | 1.6      | 12            |
| 129 | Parallelization of a Three-Dimensional Shallow-Water Estuary Model on the KSR-1. Scientific Programming, 1995, 4, 155-169.                                                  | 0.7      | 3             |
| 130 | Unsteady surface-velocity field measurement using particle tracking velocimetry. Journal of Hydraulic<br>Research/De Recherches Hydrauliques, 1995, 33, 519-534.            | 1.7      | 67            |
| 131 | Simulation of vortex shedding including blockage by the random-vortex and other methods.<br>International Journal for Numerical Methods in Fluids, 1993, 17, 1003-1013.     | 1.6      | 45            |
| 132 | Impulsively started flow around a circular cylinder by the vortex method. Journal of Fluid Mechanics, 1988, 194, 45.                                                        | 3.4      | 96            |
| 133 | The motion of a cylinder of fluid released from rest in a cross-flow. Journal of Fluid Mechanics, 1987, 177, 307-337.                                                       | 3.4      | 14            |
| 134 | Henderson Hoops: A New System for Marine Growth Inhibition on Offshore Tubulars. Journal of<br>Offshore Mechanics and Arctic Engineering, 1987, 109, 357-360.               | 1.2      | 0             |
| 135 | The Importance of Secondary Shedding in Two-Dimensional Wake Formation at Very High Reynolds<br>Numbers. Aeronautical Quarterly, 1982, 33, 105-123.                         | 0.2      | 8             |
| 136 | Discussion: "Flow Behind Two Coaxial Circular Cylinders―(Ko, N. W. M., 1982, ASME J. Fluids Eng., 104,) Tj E                                                                | TQq0 0 0 | rgBT /Overloo |

Discussion: "Pressure and Vortex Shedding Patterns Around a Low Aspect Ratio Cylinder in a Sheared Flow at Transcritical Reynolds Numbers―(Rooney, D. M., and Peltzer, R. D., 1981, ASME J. Fluids Eng., 103,) Tj ETQqa 1 0.78#314 rgf

138Seaweed ingress of cooling water intakes with predictions for Torness power station. Journal of<br/>Ocean Engineering and Marine Energy, 0, , 1.1.70