Antonio Peña GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4096022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of public lighting on pedestrians' perception of safety and well-being. Safety Science, 2015, 78, 142-148.	4.9	127
2	Indoor lighting techniques: An overview of evolution and new trends for energy saving. Energy and Buildings, 2017, 140, 50-60.	6.7	115
3	Study of light-pipes for the use of sunlight in road tunnels: From a scale model to real tunnels. Tunnelling and Underground Space Technology, 2014, 41, 82-87.	6.2	62
4	The impact of lighting on drivers well-being and safety in very long underground roads: New challenges for new infrastructures. Tunnelling and Underground Space Technology, 2018, 80, 38-43.	6.2	51
5	Use of diffusers materials to improve the homogeneity of sunlight under pergolas installed in road tunnels portals for energy savings. Tunnelling and Underground Space Technology, 2015, 48, 123-128.	6.2	49
6	Decrease of energy demands of lighting installations in road tunnels based in the forestation of portal surroundings with climbing plants. Tunnelling and Underground Space Technology, 2015, 46, 111-115.	6.2	47
7	Study of pergolas for energy savings in road tunnels. Comparison with tension structures. Tunnelling and Underground Space Technology, 2013, 35, 172-177.	6.2	46
8	Use of sunlight in road tunnels: An approach to the improvement of light-pipes' efficacy through heliostats. Tunnelling and Underground Space Technology, 2016, 60, 135-140.	6.2	46
9	Tension structures: A way towards sustainable lighting in road tunnels. Tunnelling and Underground Space Technology, 2011, 26, 223-227.	6.2	45
10	A new methodology for calculating roadway lighting design based on a multi-objective evolutionary algorithm. Expert Systems With Applications, 2013, 40, 2156-2164.	7.6	41
11	A simple method for designing efficient public lighting, based on new parameter relationships. Expert Systems With Applications, 2013, 40, 7305-7315.	7.6	41
12	Influence of lighting colour temperature on indoor thermal perception: A strategy to save energy from the HVAC installations. Energy and Buildings, 2019, 185, 112-122.	6.7	41
13	Computational optimization of semi-transparent tension structures for the use of solar light in road tunnels. Tunnelling and Underground Space Technology, 2012, 32, 127-131.	6.2	30
14	A simple and accurate model for the design of public lighting with energy efficiency functions based on regression analysis. Energy, 2016, 107, 831-842.	8.8	30
15	Optimizing Lighting of Rural Roads and Protected Areas with White Light: A Compromise among Light Pollution, Energy Savings, and Visibility. LEUKOS - Journal of Illuminating Engineering Society of North America, 2020, 16, 147-156.	2.9	30
16	Proposal to Foster Sustainability through Circular Economy-Based Engineering: A Profitable Chain from Waste Management to Tunnel Lighting. Sustainability, 2017, 9, 2229.	3.2	29
17	The Use of Led Technology and Biomass to Power Public Lighting in a Local Context: The Case of Baeza (Spain). Energies, 2018, 11, 1783.	3.1	27
18	Sustainable tunnel lighting: One decade of proposals, advances and open points. Tunnelling and Underground Space Technology, 2022, 119, 104227.	6.2	25

#	Article	IF	CITATIONS
19	A Scale Model of Tension Structures in Road Tunnels to Optimize the Use of Solar Light for Energy Saving. International Journal of Photoenergy, 2011, 2011, 1-9.	2.5	22
20	Proposal to forest Alpine tunnels surroundings to enhance energy savings from the lighting installations. Towards a standard procedure. Tunnelling and Underground Space Technology, 2018, 78, 1-7.	6.2	20
21	The SLT equation: A tool to predict and evaluate energy savings in road tunnels with sunlight systems. Tunnelling and Underground Space Technology, 2017, 64, 43-50.	6.2	17
22	A Global Perspective for Sustainable Highway Tunnel Lighting Regulations: Greater Road Safety with a Lower Environmental Impact. International Journal of Environmental Research and Public Health, 2018, 15, 2658.	2.6	16
23	Impact of Adaptive Front-lighting Systems (AFS) on road safety: Evidences and open points. Safety Science, 2012, 50, 945-949.	4.9	15
24	Strategies for the optimization of binomial energy saving landscape integration in road tunnels. WIT Transactions on Ecology and the Environment, 2014, , .	0.0	15
25	A proposal for evaluation of energy consumption and sustainability of road tunnels: The sustainability vector. Tunnelling and Underground Space Technology, 2017, 65, 53-61.	6.2	14
26	Use of Natural Light vs. Cold LED Lighting in Installations for the Recovery of Victims of Gender Violence: Impact on Energy Consumption and Victims' Recovery. Sustainability, 2017, 9, 562.	3.2	14
27	Proposal for Sustainable Dynamic Lighting in Sport Facilities to Decrease Violence among Spectators. Sustainability, 2016, 8, 1298.	3.2	13
28	New rules of thumb maximizing energy efficiency in street lighting with discharge lamps: The general equations for lighting design. Engineering Optimization, 2016, 48, 1080-1089.	2.6	13
29	Optical coupling of grouped tunnels to decrease the energy and materials consumption of their lighting installations. Tunnelling and Underground Space Technology, 2019, 91, 103007.	6.2	13
30	The Perspective of Total Lighting as a Key Factor to Increase the Sustainability of Strategic Activities. Sustainability, 2020, 12, 2751.	3.2	11
31	Comparative Study of Energy Savings for Various Control Strategies in the Tunnel Lighting System. Applied Sciences (Switzerland), 2021, 11, 6372.	2.5	11
32	Application of Translucent Concrete for Lighting Purposes in Civil Infrastructures and its Optical Characterization. Key Engineering Materials, 2015, 663, 148-156.	0.4	10
33	Considerations about the impact of public lighting on pedestrians' perception of safety and well-being. Safety Science, 2016, 89, 315-318.	4.9	10
34	Determination of lighting and energy demands of road tunnels using vehicle based photographs of the portal gates: An accessible and safe tool for tunnel renewal and maintenance. Tunnelling and Underground Space Technology, 2018, 78, 8-15.	6.2	10
35	Decrease of the Maximum Speed in Highway Tunnels as a Measure to Foster Energy Savings and Sustainability. Energies, 2019, 12, 685.	3.1	10
36	Users' Awareness, Attitudes, and Perceptions of Health Risks Associated with Excessive Lighting in Night Markets: Policy Implications for Sustainable Development. Sustainability, 2019, 11, 6091.	3.2	10

#	Article	IF	CITATIONS
37	Installation of solar panels in the surroundings of tunnel portals: A double-targeted strategy to decrease lighting requirements and consumption. Tunnelling and Underground Space Technology, 2020, 97, 103251.	6.2	9
38	Influence of daytime running lamps on visual reaction time of pedestrians when detecting turn indicators. Journal of Safety Research, 2010, 41, 385-389.	3.6	7
39	Flat Glass or Crystal Dome Aperture? A Year-Long Comparative Analysis of the Performance of Light Pipes in Real Residential Settings and Climatic Conditions. Sustainability, 2020, 12, 3858.	3.2	7
40	Towards Total Lighting: Expanding the Frontiers of Sustainable Development. Sustainability, 2019, 11, 6943.	3.2	6
41	Indoor Lighting Customization Based on Effective Reflectance Coefficients: A Methodology to Optimize Visual Performance and Decrease Consumption in Educative Workplaces. Sustainability, 2021, 13, 119.	3.2	5
42	A simple model for fibre optics: planar dielectric waveguides in rotation. European Journal of Physics, 2006, 27, 657-665.	0.6	4
43	Considerations on the Effects of Automotive Lighting to Enhance Alert and Avoid Sleepiness in Night Time Drivers Via Melatonin Inhibition. Procedia Engineering, 2014, 84, 608-612.	1.2	4
44	Effects of Daytime Running Lamps on Pedestrians Visual Reaction Time: Implications on Vehicles and Human Factors. Procedia Engineering, 2014, 84, 603-607.	1.2	4
45	The Contribution of Peripheral Large Scientific Infrastructures to Sustainable Development from a Global and Territorial Perspective: The Case of IFMIF-DONES. Sustainability, 2021, 13, 454.	3.2	4
46	Sustainability as the Key Framework of a Total Lighting. Sustainability, 2018, 10, 4412.	3.2	3
47	FINANCIAL AND ENVIRONMENTAL IMPACT OF COMBINED ACTIONS IN ROAD TUNNELS FOR THE DECREASE OF ENERGY AND RAW MATERIAL CONSUMPTION. WIT Transactions on Ecology and the Environment, 2018, , .	0.0	3
48	Planar dielectric waveguides in rotation are optical fibers: comparison with the classical model. Optics Express, 2008, 16, 927.	3.4	2
49	Personal factors influencing the visual reaction time of pedestrians to detect turn indicators in the presence of Daytime Running Lamps. Ergonomics, 2016, 59, 1596-1605.	2.1	2
50	A First Approach to a New Index on Indoor Lighting Comfort Based on Corneal Illuminance. Journal of Daylighting, 2019, 6, 124-130.	1.2	2
51	The rotating planar dielectric waveguide model in wave optics: results for step-index profile optical fibers. Journal of Optics (United Kingdom), 2010, 12, 035103.	2.2	1
52	Reflectance of interurban-road pavements from radar-based measurements. , 2013, , .		1
53	The Contribution of Experimental Energy Facilities to the Achievement of SDG in their Environment: The Case of IFMIF-DONES. Renewable Energy and Power Quality Journal, 0, 19, 471-476.	0.2	1
54	Computational Simulation versus Scale Model to determine the Optimal Shape of Tension Structures for the use of Sunlight in Road Tunnels. Renewable Energy and Power Quality Journal, 0, , 97-101.	0.2	1

#	Article	IF	CITATIONS
55	IFMIF-DONES as Paradigm of Institutional Funding in the Way towards Sustainable Energy. Sustainability, 2021, 13, 13093.	3.2	1
56	Influence of Groves on Daylight Conditions and Visual Performance of Users of Urban Civil Infrastructures. Sustainability, 2021, 13, 12732.	3.2	1
57	Extension of the Rotating Planar Waveguide Model to Formation of Interference Patterns in Optical Fibers. Journal of the Optical Society of Korea, 2011, 15, 128-131.	0.6	0
58	Teaching methodologies to promote creativity in the professional skills related to optics knowledge. , 2014, , .		0
59	Towards the generation of distributed electric power: self-consumption with net balance. International Journal of Low-Carbon Technologies, 2015, 10, 254-257.	2.6	0
60	People's Perception of Experimental Installations for Sustainable Energy: The Case of IFMIF-DONES. Sustainability, 2022, 14, 899.	3.2	0